Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38819362

RESUMO

Chimeric antigen receptor cell therapy is a successful immunotherapy for the treatment of blood cancers. However, hurdles in their manufacturing remain including efficient isolation and purification of the T-cell starting material. Herein, we describe a one-step separation based on inertial spiral microfluidics for efficient enrichment of T-cells in B-cell acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia patient's samples. In healthy donors used to optimize the process, the lymphocyte purity was enriched from 65% (SD ± 0.2) to 91% (SD ± 0.06) and T-cell purity was enriched from 45% (SD ± 0.1) to 73% (SD ± 0.02). Leukemic samples had higher starting B-cells compared to the healthy donor samples. Efficient enrichment and recovery of lymphocytes and T-cells were achieved in ALL samples with B-cells, monocytes and leukemic blasts depleted by 80% (SD ± 0.09), 89% (SD ± 0.1) and 74% (SD ± 0.09), respectively, and a 70% (SD ± 0.1) T-cell recovery. Chronic lymphocytic leukemia samples had lower T-cell numbers, and the separation process was less efficient compared to the ALL. This study demonstrates the use of inertial microfluidics for T-cell enrichment and depletion of B-cell blasts in ALL, suggesting its potential to address a key bottleneck of the chimeric antigen receptor-T manufacturing workflow.

2.
Adv Biol (Weinh) ; 6(1): e2101018, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34881810

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy is rapidly becoming a frontline cancer therapy. However, the manufacturing process is time-, labor- and cost-intensive, and it suffers from significant bottlenecks. Many CAR-T products fail to reach the viability release criteria set by regulators for commercial cell therapy products. This results in non-recoupable costs for the manufacturer and is detrimental to patients who may not receive their scheduled treatment or receive out-of-specification suboptimal formulation. It is demonstrated here that inertial microfluidics can, within minutes, efficiently deplete nonviable cells from low-viability CAR-T cell products. The percentage of viable cells increases from 40% (SD ± 0.12) to 71% (SD ± 0.09) for untransduced T cells and from 51% (SD ± 0.12) to 71% (SD ± 0.09) for CAR-T cells, which meets the clinical trials' release parameters. In addition, the processing of CAR-T cells formulated in CryStor yields a 91% reduction in the amount of the cryoprotectant dimethyl sulfoxide. Inertial microfluidic processing has no detrimental effects on the proliferation and cytotoxicity of CAR-T cells. Interestingly, ≈50% of T-regulatory and T-suppressor cells are depleted, suggesting the potential for inertial microfluidic processing to tune the phenotypical composition of T-cell products.


Assuntos
Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva , Contagem de Linfócitos , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA