Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
New Phytol ; 237(6): 2069-2087, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527230

RESUMO

The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.


Assuntos
Ecossistema , Água , Água/fisiologia , Fotossíntese/fisiologia , Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Transpiração Vegetal , Estômatos de Plantas/fisiologia
2.
New Phytol ; 238(6): 2345-2362, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960539

RESUMO

Terrestrial biosphere models (TBMs) include the representation of vertical gradients in leaf traits associated with modeling photosynthesis, respiration, and stomatal conductance. However, model assumptions associated with these gradients have not been tested in complex tropical forest canopies. We compared TBM representation of the vertical gradients of key leaf traits with measurements made in a tropical forest in Panama and then quantified the impact of the observed gradients on simulated canopy-scale CO2 and water fluxes. Comparison between observed and TBM trait gradients showed divergence that impacted canopy-scale simulations of water vapor and CO2 exchange. Notably, the ratio between the dark respiration rate and the maximum carboxylation rate was lower near the ground than at the top-of-canopy, leaf-level water-use efficiency was markedly higher at the top-of-canopy, and the decrease in maximum carboxylation rate from the top-of-canopy to the ground was less than TBM assumptions. The representation of the gradients of leaf traits in TBMs is typically derived from measurements made within-individual plants, or, for some traits, assumed constant due to a lack of experimental data. Our work shows that these assumptions are not representative of the trait gradients observed in species-rich, complex tropical forests.


Assuntos
Dióxido de Carbono , Árvores , Florestas , Fotossíntese , Folhas de Planta
3.
Plant Cell Environ ; 46(3): 736-746, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564901

RESUMO

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf ) to total soil-to-leaf hydraulic resistance (Rtotal ), or fRleaf (=Rleaf /Rtotal ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleaf using new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleaf averaged 0.51 (95% confidence interval [CI] = 0.46-0.57) and it declined with tree height. We also used the allometric relationship between field-based measurements of soil-to-leaf hydraulic conductance and laboratory-based measurements of leaf hydraulic conductance to compute the average fRleaf for 19 tree samples, which was 0.40 (95% CI = 0.29-0.56). The in situ technique produces a more accurate descriptor of fRleaf because it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleaf may help stems from loss of hydraulic conductance. Thus, the decline in fRleaf with tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.


Assuntos
Solo , Árvores , Árvores/fisiologia , Água/fisiologia , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia
4.
Glob Chang Biol ; 28(11): 3537-3556, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35090072

RESUMO

Stomata play a central role in surface-atmosphere exchange by controlling the flux of water and CO2 between the leaf and the atmosphere. Representation of stomatal conductance (gsw ) is therefore an essential component of models that seek to simulate water and CO2 exchange in plants and ecosystems. For given environmental conditions at the leaf surface (CO2 concentration and vapor pressure deficit or relative humidity), models typically assume a linear relationship between gsw and photosynthetic CO2 assimilation (A). However, measurement of leaf-level gsw response curves to changes in A are rare, particularly in the tropics, resulting in only limited data to evaluate this key assumption. Here, we measured the response of gsw and A to irradiance in six tropical species at different leaf phenological stages. We showed that the relationship between gsw and A was not linear, challenging the key assumption upon which optimality theory is based-that the marginal cost of water gain is constant. Our data showed that increasing A resulted in a small increase in gsw at low irradiance, but a much larger increase at high irradiance. We reformulated the popular Unified Stomatal Optimization (USO) model to account for this phenomenon and to enable consistent estimation of the key conductance parameters g0 and g1 . Our modification of the USO model improved the goodness-of-fit and reduced bias, enabling robust estimation of conductance parameters at any irradiance. In addition, our modification revealed previously undetectable relationships between the stomatal slope parameter g1 and other leaf traits. We also observed nonlinear behavior between A and gsw in independent data sets that included data collected from attached and detached leaves, and from plants grown at elevated CO2 concentration. We propose that this empirical modification of the USO model can improve the measurement of gsw parameters and the estimation of plant and ecosystem-scale water and CO2  fluxes.


Assuntos
Estômatos de Plantas , Transpiração Vegetal , Dióxido de Carbono , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/fisiologia
5.
J Exp Bot ; 72(18): 6474-6489, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34235536

RESUMO

Drought is the most important limitation on crop yield. Understanding and detecting drought stress in crops is vital for improving water use efficiency through effective breeding and management. Leaf reflectance spectroscopy offers a rapid, non-destructive alternative to traditional techniques for measuring plant traits involved in a drought response. We measured drought stress in six glasshouse-grown agronomic species using physiological, biochemical, and spectral data. In contrast to physiological traits, leaf metabolite concentrations revealed drought stress before it was visible to the naked eye. We used full-spectrum leaf reflectance data to predict metabolite concentrations using partial least-squares regression, with validation R2 values of 0.49-0.87. We show for the first time that spectroscopy may be used for the quantitative estimation of proline and abscisic acid, demonstrating the first use of hyperspectral data to detect a phytohormone. We used linear discriminant analysis and partial least squares discriminant analysis to differentiate between watered plants and those subjected to drought based on measured traits (accuracy: 71%) and raw spectral data (66%). Finally, we validated our glasshouse-developed models in an independent field trial. We demonstrate that spectroscopy can detect drought stress via underlying biochemical changes, before visual differences occur, representing a powerful advance for measuring limitations on yield.


Assuntos
Secas , Melhoramento Vegetal , Ácido Abscísico , Produtos Agrícolas , Folhas de Planta
6.
J Exp Bot ; 72(18): 6175-6189, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34131723

RESUMO

Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.


Assuntos
Ecossistema , Folhas de Planta , Análise dos Mínimos Quadrados , Fenótipo
7.
Glob Chang Biol ; 26(2): 823-839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31482618

RESUMO

Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs ) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water-use-efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf ), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf-mass-per-area (LMA), leaf carboxylation capacity (Vc,max ), leaf water content, the degree of isohydry, and predawn Ψleaf . We first investigated how the choice of four commonly used leaf-level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs , and then explored the abiotic (i.e. month, site-month interaction) and biotic (i.e. tree-species-specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2  = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait-based approach to improve modeling of carbon and water exchange in tropical forests.


Assuntos
Secas , Florestas , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Estações do Ano , Árvores , Água
8.
New Phytol ; 223(1): 167-179, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30767227

RESUMO

How terrestrial biosphere models (TBMs) represent leaf photosynthesis and its sensitivity to temperature are two critical components of understanding and predicting the response of the Arctic carbon cycle to global change. We measured the effect of temperature on the response of photosynthesis to irradiance in six Arctic plant species and determined the quantum yield of CO2 fixation ( ϕCO2 ) and the convexity factor (θ). We also determined leaf absorptance (α) from measured reflectance to calculate ϕCO2 on an absorbed light basis ( ϕCO2.a ) and enabled comparison with nine TBMs. The mean ϕCO2.a was 0.045 mol CO2  mol-1 absorbed quanta at 25°C and closely agreed with the mean TBM parameterisation (0.044), but as temperature decreased measured ϕCO2.a diverged from TBMs. At 5°C measured ϕCO2.a was markedly reduced (0.025) and 60% lower than TBM estimates. The θ also showed a significant reduction between 25°C and 5°C. At 5°C θ was 38% lower than the common model parameterisation of 0.7. These data show that TBMs are not accounting for observed reductions in ϕCO2.a and θ that can occur at low temperature. Ignoring these reductions in ϕCO2.a and θ could lead to a marked (45%) overestimation of CO2 assimilation at subsaturating irradiance and low temperature.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Modelos Teóricos , Teoria Quântica , Temperatura , Absorção de Radiação , Regiões Árticas , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estações do Ano
9.
New Phytol ; 224(4): 1557-1568, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418863

RESUMO

Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long-standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking. We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m-2 . Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad- and needleleaf species, and upper- and lower-canopy (i.e. sun and shade) growth environments. Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R2  = 0.89; root mean square error (RMSE) = 15.45 g m-2 ). Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes.


Assuntos
Modelos Biológicos , Folhas de Planta/química , Folhas de Planta/fisiologia , Regiões Árticas , Bases de Dados Factuais , Ecossistema , Modelos Estatísticos , Análise Espaço-Temporal , Análise Espectral/métodos , Clima Tropical
10.
Plant Cell Environ ; 42(5): 1705-1714, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30537216

RESUMO

Nonstructural carbohydrates (NSCs) are essential for maintenance of plant metabolism and may be sensitive to short- and long-term climatic variation. NSC variation in moist tropical forests has rarely been studied, so regulation of NSCs in these systems is poorly understood. We measured foliar and branch NSC content in 23 tree species at three sites located across a large precipitation gradient in Panama during the 2015-2016 El Niño to examine how short- and long-term climatic variation impact carbohydrate dynamics. There was no significant difference in total NSCs as the drought progressed (leaf P = 0.32, branch P = 0.30) nor across the rainfall gradient (leaf P = 0.91, branch P = 0.96). Foliar soluble sugars decreased while starch increased over the duration of the dry period, suggesting greater partitioning of NSCs to storage than metabolism or transport as drought progressed. There was a large variation across species at all sites, but total foliar NSCs were positively correlated with leaf mass per area, whereas branch sugars were positively related to leaf temperature and negatively correlated with daily photosynthesis and wood density. The NSC homoeostasis across a wide range of conditions suggests that NSCs are an allocation priority in moist tropical forests.


Assuntos
Secas , El Niño Oscilação Sul , Amido/metabolismo , Açúcares/metabolismo , Árvores/metabolismo , Carboidratos/fisiologia , Florestas , Panamá , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Clima Tropical , Madeira/metabolismo
11.
J Exp Bot ; 70(6): 1789-1799, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30799496

RESUMO

Approaches that enable high-throughput, non-destructive measurement of plant traits are essential for programs seeking to improve crop yields through physiological breeding. However, many key traits still require measurement using slow, labor-intensive, and destructive approaches. We investigated the potential to retrieve key traits associated with leaf source-sink balance and carbon-nitrogen status from leaf optical properties. Structural and biochemical traits and leaf reflectance (500-2400 nm) of eight crop species were measured and used to develop predictive 'spectra-trait' models using partial least squares regression. Independent validation data demonstrated that the models achieved very high predictive power for C, N, C:N ratio, leaf mass per area, water content, and protein content (R2>0.85), good predictive capability for starch, sucrose, glucose, and free amino acids (R2=0.58-0.80), and some predictive capability for nitrate (R2=0.51) and fructose (R2=0.44). Our spectra-trait models were developed to cover the trait space associated with food or biofuel crop plants and can therefore be applied in a broad range of phenotyping studies.


Assuntos
Ciclo do Carbono , Produtos Agrícolas/fisiologia , Ciclo do Nitrogênio , Folhas de Planta/fisiologia , Análise Espectral , Cucumis sativus/fisiologia , Cucurbita/fisiologia , Helianthus/fisiologia , Solanum lycopersicum/fisiologia , Ocimum basilicum/fisiologia , Phaseolus/fisiologia , Populus/fisiologia , Glycine max/fisiologia
12.
New Phytol ; 216(4): 1090-1103, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877330

RESUMO

Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (Vc,max.25 and Jmax.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower than commonly used values. When scaled to 25°C, Vc,max.25 and Jmax.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.


Assuntos
Mudança Climática , Modelos Biológicos , Fotossíntese , Regiões Árticas , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Temperatura
14.
Sci Data ; 9(1): 700, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376356

RESUMO

Research can be more transparent and collaborative by using Findable, Accessible, Interoperable, and Reusable (FAIR) principles to publish Earth and environmental science data. Reporting formats-instructions, templates, and tools for consistently formatting data within a discipline-can help make data more accessible and reusable. However, the immense diversity of data types across Earth science disciplines makes development and adoption challenging. Here, we describe 11 community reporting formats for a diverse set of Earth science (meta)data including cross-domain metadata (dataset metadata, location metadata, sample metadata), file-formatting guidelines (file-level metadata, CSV files, terrestrial model data archiving), and domain-specific reporting formats for some biological, geochemical, and hydrological data (amplicon abundance tables, leaf-level gas exchange, soil respiration, water and sediment chemistry, sensor-based hydrologic measurements). More broadly, we provide guidelines that communities can use to create new (meta)data formats that integrate with their scientific workflows. Such reporting formats have the potential to accelerate scientific discovery and predictions by making it easier for data contributors to provide (meta)data that are more interoperable and reusable.


Assuntos
Ciência Ambiental , Projetos de Pesquisa , Metadados , Fluxo de Trabalho
15.
PLoS One ; 16(10): e0258791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34665822

RESUMO

Tropical forests are one of the main carbon sinks on Earth, but the magnitude of CO2 absorbed by tropical vegetation remains uncertain. Terrestrial biosphere models (TBMs) are commonly used to estimate the CO2 absorbed by forests, but their performance is highly sensitive to the parameterization of processes that control leaf-level CO2 exchange. Direct measurements of leaf respiratory and photosynthetic traits that determine vegetation CO2 fluxes are critical, but traditional approaches are time-consuming. Reflectance spectroscopy can be a viable alternative for the estimation of these traits and, because data collection is markedly quicker than traditional gas exchange, the approach can enable the rapid assembly of large datasets. However, the application of spectroscopy to estimate photosynthetic traits across a wide range of tropical species, leaf ages and light environments has not been extensively studied. Here, we used leaf reflectance spectroscopy together with partial least-squares regression (PLSR) modeling to estimate leaf respiration (Rdark25), the maximum rate of carboxylation by the enzyme Rubisco (Vcmax25), the maximum rate of electron transport (Jmax25), and the triose phosphate utilization rate (Tp25), all normalized to 25°C. We collected data from three tropical forest sites and included leaves from fifty-three species sampled at different leaf phenological stages and different leaf light environments. Our resulting spectra-trait models validated on randomly sampled data showed good predictive performance for Vcmax25, Jmax25, Tp25 and Rdark25 (RMSE of 13, 20, 1.5 and 0.3 µmol m-2 s-1, and R2 of 0.74, 0.73, 0.64 and 0.58, respectively). The models showed similar performance when applied to leaves of species not included in the training dataset, illustrating that the approach is robust for capturing the main axes of trait variation in tropical species. We discuss the utility of the spectra-trait and traditional gas exchange approaches for enhancing tropical plant trait studies and improving the parameterization of TBMs.


Assuntos
Fotossíntese , Folhas de Planta/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Respiração Celular , Transporte de Elétrons , Florestas , Análise dos Mínimos Quadrados , Panamá , Proteínas de Plantas , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA