Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 463(7282): 747-56, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148028

RESUMO

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.


Assuntos
Ecologia/tendências , Aquecimento Global , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Atividades Humanas , Medição de Risco , Emissões de Veículos
2.
Proc Natl Acad Sci U S A ; 107(2): 571-5, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080720

RESUMO

Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models.


Assuntos
Mudança Climática , Clima , Umidade , Ecossistema , Previsões , Geografia , Modelos Teóricos , Chuva , Projetos de Pesquisa
3.
Sustain Sci ; 16(2): 695-701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33193903

RESUMO

Climate change and coronavirus pandemic are the twin crises in the Anthropocene, the era in which unsustainable growth of human activities has led to a significant change in the global environment. The two crises have also exposed a chronic social illness of our time-a deep, widespread inequality in society. Whilst the circumstances are unfortunate, the pandemic can provide an opportunity for sustainability scientists to focus more on human society and its inequalities, rather than a sole focus on the natural environment. It opens the way for a new normative commitment of science in a time of crises. We suggest three agendas for future climate and sustainability research after the pandemic: (1) focus on health and well-being, (2) moral engagement through empathy, and (3) science of loss for managing grief.

4.
Sustain Sci ; 13(2): 279-289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147781

RESUMO

We have assessed the risks associated with setting 1.5, 2.0, or 2.5 °C temperature goals and ways to manage them in a systematic manner and discussed their implications. The results suggest that, given the uncertainties in climate sensitivity, "net zero emissions of anthropogenic greenhouse gases in the second half of this century" is a more actionable goal for society than the 2 or 1.5 °C temperature goals themselves. If the climate sensitivity is proven to be relatively high and the temperature goals are not met even when the net zero emission goal is achieved, the options left are: (A) accepting/adapting to a warmer world, (B) boosting mitigation, and (C) climate geoengineering, or any combination of these. This decision should be made based on a deeper discussion of risks associated with each option. We also suggest the need to consider a wider range of policies: not only climate policies, but also broader "sustainability policies", and to envisage more innovative solutions than what integrated assessment models can currently illustrate. Finally, based on a consideration of social aspects of risk decisions, we recommend the establishment of a panel of "intermediate layer" experts, who support decision-making by citizens as well as social and ethical thinking by policy makers.

5.
Nat Commun ; 2: 253, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21448152

RESUMO

Climate warming due to human activities will be accompanied by hydrological cycle changes. Economies, societies and ecosystems in South America are vulnerable to such water resource changes. Hence, water resource impact assessments for South America, and corresponding adaptation and mitigation policies, have attracted increased attention. However, substantial uncertainties remain in the current water resource assessments that are based on multiple coupled Atmosphere Ocean General Circulation models. This uncertainty varies from significant wetting to catastrophic drying. By applying a statistical method, we characterized the uncertainty and identified global-scale metrics for measuring the reliability of water resource assessments in South America. Here, we show that, although the ensemble mean assessment suggested wetting across most of South America, the observational constraints indicate a higher probability of drying in the Amazon basin. Thus, over-reliance on the consensus of models can lead to inappropriate decision making.


Assuntos
Mudança Climática , Água , Ecossistema , Modelos Teóricos , Medição de Risco , América do Sul , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA