RESUMO
Microplastics (MPs) are a global concern as an emerging pollutant, and the investigation on MPs in Antarctic aids in informing their global pollution assessments. Therefore, there are urgent scientific concerns regarding the environmental behavior, origins, influencing factors, and potential hazards of MPs in Antarctica. This study presents the characteristics of MPs from one ornithogenic sediment profile (coded CC) and two ornithogenic soil profiles (coded MR1 and MR2) from ice-free areas on Ross Island, Antarctica. We explored the potential sources of MPs and the main influencing factors for deposition based on their distribution with depth in the profiles. Through laser-infrared imaging spectroscopy (LDIR), a total of 30 polymer types were identified in all samples, with polyethylene terephthalate (PET) and polyvinyl chloride (PVC) as the dominant types, accounting for more than 70% of the total. The abundance of MPs in the CC sediment profile ranged from 2.83 to 394.18 items/g, while in MR1 and MR2 soil profiles, the abundance ranged from 2.25 to 1690.11 and 8.24 to 168.27 items/g, respectively. The size of MPs was mainly concentrated in the range of 20-50 µm, and possible downward movement of certain polymer types was revealed. From the perspective of temporal variation, we suggest that MPs were heavily influenced by local human activities including scientific research, fishing, and tourism, balanced by protective regulations, while no solid evidence was obtained to support strong influence from biological transport through penguins. This research enhances our understanding on the environmental behavior of MPs in the terrestrial systems of remote polar regions.
RESUMO
We sampled clapper rail (Rallus crepitans) feathers from museum specimens collected between 1965 and 2010 to investigate changes in mercury (Hg) availability in coastal marshes of New Hanover County, North Carolina. Stable isotope analysis (δ(13)C and δ(15)N) was conducted to control for dietary shifts that may have influenced Hg exposure. Hg concentrations ranged from 0.96 to 9.22 µg/g (ppm), but showed no significant trend over time; diet (δ(15)N) or foraging habitat (δ(13)C) also provided little to no explanatory power to the variation in Hg concentrations among clapper rails. Our findings suggest the bioavailability of Hg to clapper rails in coastal North Carolina salt marshes has remained consistent over time, despite the global trend of increasing mercury in many other bird species, providing an excellent baseline for any future assessment of Hg availability to salt marsh birds in coastal North Carolina.
Assuntos
Monitoramento Ambiental/métodos , Plumas/química , Mercúrio/análise , Animais , Aves , Ecossistema , North Carolina , Cloreto de Sódio , Áreas AlagadasRESUMO
Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.
Assuntos
Altitude , Dióxido de Carbono/análise , Fósseis , Marmota/fisiologia , Plantas/química , Dente , Animais , Temperatura Baixa , HumanosRESUMO
Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.
Assuntos
Monitoramento Ambiental , Mercúrio/análise , Estações do Ano , Spheniscidae , Poluentes Químicos da Água/análise , Animais , Regiões Antárticas , Disponibilidade Biológica , Casca de Ovo/química , Plumas/química , Cadeia AlimentarRESUMO
Methylmercury is a toxin of local, regional, and global concern, with estuarine habitats possessing ecological characteristics that support conversion of inorganic mercury into this methylated form. We monitored Hg concentrations in species within the food web of the lower Cape Fear River (CFR) estuary in 2018-2020. Samples were analyzed for Hg concentrations and nitrogen isotopes (a measure of trophic level), and we found a positive relationship within this food web each year (p < 0.0001), indicating biomagnification is occurring. The highest Hg concentrations were among the upper trophic level species (Royal Terns, 4.300 ppm). While the Hg concentrations we documented are below assumed thresholds for toxic effects, we found spikes in Hg concentrations after Hurricane Florence in 2018 and with other disturbances to the CFR that resuspended bottom sediments. Continued monitoring is needed to understand the cause of annual variations, health implications, and conservation needs.
Assuntos
Monitoramento Ambiental , Estuários , Cadeia Alimentar , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Rios/química , Compostos de Metilmercúrio/análiseRESUMO
Organic nitrogen (ON) is an important participant in the Earth's N cycle. Previous studies have shown that penguin feces add an abundance of nutrients including N to the soil, significantly changing the eco-environment in ice-free areas in Antarctica. To explore the molecular transformation of ON in penguin guano-affected soil, we collected guano-free weathered soil, modern guano-affected soil from penguin colonies, ancient guano-affected soil from abandoned penguin colonies, and penguin feces from the Ross Sea region, Antarctica, and Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) was used to investigate the chemical composition of water-extractable ON. By comparing the molecular compositions of ON among different samples, we found that the number of ON compounds (>4,000) in weathered soil is minimal, while carboxylic-rich alicyclic-like molecules (CRAM-like) are dominant. Penguin feces adds ON into the soil with > 10,000 CHON, CHONS and CHN compounds, including CRAM-like, lipid-like, aliphatic/ peptide-like molecules and amines in the guano-affected soil. After the input of penguin feces, macromolecules continue to degrade, and other ON compounds tend to be oxidized into relatively stable CRAM-like molecules, this is an important transformation process of ON in guano-affected soils. We conclude the roles of various forms of ON in the N cycle are complex and diverse. Combined with previous studies, ON eventually turns into inorganic N and is lost from the soil. The lost N ultimately returns to the ocean and the food web, thus completing the N cycle. Our study preliminarily reveals the molecular transformation of ON in penguin guano-affected soil and is important for understanding the N cycle in Antarctica.
Assuntos
Spheniscidae , Humanos , Animais , Nitrogênio , Regiões Antárticas , Solo/química , AminasRESUMO
Using entire modern and ancient mitochondrial genomes of Adélie penguins (Pygoscelis adeliae) that are up to 44000 years old, we show that the rates of evolution of the mitochondrial genome are two to six times greater than those estimated from phylogenetic comparisons. Although the rate of evolution at constrained sites, including nonsynonymous positions and RNAs, varies more than twofold with time (between shallow and deep nodes), the rate of evolution at synonymous sites remains the same. The time-independent neutral evolutionary rates reported here would be useful for the study of recent evolutionary events.
Assuntos
Evolução Molecular , Genoma Mitocondrial/genética , Spheniscidae/genética , Animais , DNA Mitocondrial/química , Variação Genética , Genética Populacional , HumanosRESUMO
RATIONALE: Physiological stress and starvation have been shown to affect δ(13)C and δ(15)N isotope values and, given that animals often die from starvation, the cause of death may be an important factor to consider in stable isotope analyses of opportunistically collected samples. METHODS: We addressed this issue by comparing tissue stable isotope values of living and deceased Adélie (Pygoscelis adeliae) and Chinstrap Penguin (P. antarctica) chicks collected from the same respective populations. RESULTS: No significant difference was found between living and deceased penguin chick feather, down, and toenail isotope values and both groups displayed similar isotopic trends between tissue types. In addition, similar relationships were observed between both species and across several seasons. Furthermore, sub-dermal adiposity and cause of death (starvation and/or predation) had no significant effect on the δ(13)C and δ(15)N values. CONCLUSIONS: Our findings suggest that tissues from deceased penguins can be isotopically representative of tissues obtained from the living population, despite the cause of death, and support the use of opportunistic sampling in stable isotope analyses.
Assuntos
Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Spheniscidae/fisiologia , Animais , Morte , Estações do AnoRESUMO
We captured Nelson's, Saltmarsh and Seaside Sparrows (Ammodramus nelsoni, A. caudacutus and A. maritimus) at three salt marsh sites near Wrightsville Beach, North Carolina during five non-breeding seasons (September through April, 2006-2011). We analyzed breast feather samples from all of these seasons and blood and first primary feather (P1) samples from three seasons (2008-2011) for mercury (Hg). Generalized linear models were used to test for the impact of species, season, site and month on blood Hg, species, season and site on P1 Hg and species and season on breast feather Hg. The best-fit model for blood indicated that Hg varied among species, seasons and months. Saltmarsh Sparrows maintain higher blood Hg than Nelson's and Seaside Sparrows during the non-breeding season while they are feeding in mixed flocks. In Nelson's and Seaside Sparrows, blood Hg decreased during mid-winter compared to early fall and late spring. Breast feather and P1 Hg varied among species with Saltmarsh Sparrows exhibiting higher concentrations than the other two species, while Nelson's Sparrows had lower concentrations than the other two species. Breast feather Hg was higher in the final three seasons than in the first two. Our results indicate that Hg exposure on breeding sites may be increasing and that high levels of Hg exposure during the breeding season may affect blood Hg concentrations year-round in Saltmarsh Sparrows. Our data thus provide a baseline for future Hg assessments in these species in NC.
Assuntos
Monitoramento Ambiental , Compostos de Mercúrio/sangue , Pardais/fisiologia , Poluentes Químicos da Água/sangue , Animais , Análise Química do Sangue , Exposição Ambiental , Plumas/química , Plumas/metabolismo , Compostos de Mercúrio/análise , Compostos de Mercúrio/toxicidade , Modelos Biológicos , North Carolina , Estações do Ano , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Áreas AlagadasRESUMO
We examined how dietary factors recorded by C and N influence Hg uptake in 347 individuals of yellowfin tuna (Thunnus albacares), an important subsistence resource from the Galápagos Marine Reserve (Ecuador) and the Ecuadorian mainland coast in 2015-2016. We found no differences in total Hg (THg) measured in red muscle between the two regions and no seasonal differences, likely due to the age of the fish and slow elimination rates of Hg. Our THg concentrations are comparable to those of other studies in the Pacific (0.20-9.60 mg/kg wet wt), but a subset of individuals exhibited the highest Hg concentrations yet reported in yellowfin tuna. Mercury isotope values differed between Δ199 Hg and δ202Hg in both regions (Δ199 Hg = 2.86 ± 0.04 vs. Δ199 Hg = 2.33 ± 0.07), likely related to shifting food webs and differing photochemical processing of Hg prior to entry into the food web. There were significantly lower values of both δ15 N and δ13 C in tuna from Galápagos Marine Reserve (δ15 N: 8.5-14.2, δ13 C: -18.5 to -16.1) compared with those from the Ecuadorian mainland coast (δ15 N: 8.3-14.4, δ13 C: -19.4 to -11.9), of which δ13 C values suggest spatially constrained movements of tuna. Results from the pooled analysis, without considering region, indicated that variations in δ13 C and δ15 N values tracked changes of Hg stable isotopes. Our data indicate that the individual tuna we used were resident fish of each region and were heavily influenced by upwellings related to the eastern Pacific oxygen minimum zone and the Humboldt Current System. The isotopes C, N, and Hg reflect foraging behavior mainly on epipelagic prey in shallow waters and that food web shifts drive Hg variations between these populations of tuna. Environ Toxicol Chem 2022;41:2732-2744. © 2022 SETAC.
Assuntos
Mercúrio , Animais , Mercúrio/análise , Atum , Equador , Isótopos de Mercúrio/análise , Isótopos/análise , Oxigênio/análiseRESUMO
Phosphorus (P) chemistry and its dynamic cycling are essential for understanding aquatic primary productivity and ecosystem structure. However, there is a lack of knowledge on P chemistry in pristine aquatic ecosystems, such as in Antarctica. Here, we applied the Standards, Measurements and Testing Program (SMT) procedure and nuclear magnetic resonance spectroscopy (NMR) to reveal P speciation in two types of lacustrine sediment cores collected from Inexpressible Island, Ross Sea, East Antarctica. The Positive Matrix Factorization Model and Generalized Additive Models were applied to quantitatively identify the P sources and estimate relative effects of various environmental factors on the speciation. Our results demonstrate that orthophosphate, mainly as Ca-P, is the major component and the ortho-monoesters are the predominant organic phosphorus (OP) form in lacustrine sediments. Ornithogenic lacustrine sediments have a higher content of P as Ca-P than sediments with little or no penguin influence. Our model further suggests that penguin guano is the most important source for Ca-P, accounting for 80%, while detrital input is the predominant source for Fe/Al-P (up to 90%). The content of ortho-monoesters, as revealed by NMR, declines with depth, reflecting mineralization process of OP in the sediments. Moreover, we observed higher relative proportions of organic P in the sediments with little guano influence and the deposition of organic P are likely facilitated by microbial mats. Overall, our data suggest that burial of P in Antarctic lakes is sensitive to different P sources and sedimentary environments. The relatively higher bioavailable phosphorus in lacustrine sediments largely controls growth of aquatic microbial mats in oligotrophic lakes and ponds in Antarctica. The sediment profile data also indicate that P burial increased during the Medieval Climate Anomaly period, and climate warming is more conducive to P burial through the expansion of penguin populations and productivity of microbial mats. Our findings represent the first systematic understanding of natural P cycling dynamics and its main controlling factors in pristine ponds with different organic sources in Antarctica.
Assuntos
Spheniscidae , Poluentes Químicos da Água , Animais , Regiões Antárticas , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise , Poluentes Químicos da Água/análiseRESUMO
The New World Vulture [Coragyps] occidentalis (L. Miller, 1909) is one of many species that were extinct by the end of the Pleistocene. To understand its evolutionary history we sequenced the genome of a 14,000 year old [Coragyps] occidentalis found associated with megaherbivores in the Peruvian Andes. occidentalis has been viewed as the ancestor, or possibly sister, to the extant Black Vulture Coragyps atratus, but genomic data shows occidentalis to be deeply nested within the South American clade of atratus. Coragyps atratus inhabits lowlands, but the fossil record indicates that occidentalis mostly occupied high elevations. Our results suggest that occidentalis evolved from a population of atratus in southwestern South America that colonized the High Andes 300 to 400 kya. The morphological and morphometric differences between occidentalis and atratus may thus be explained by ecological diversification following from the natural selection imposed by this new and extreme, high elevation environment. The sudden evolution of a population with significantly larger body size and different anatomical proportions than atratus thus constitutes an example of punctuated evolution.
Assuntos
Aves , Fósseis , Animais , Aves/anatomia & histologia , América do SulRESUMO
The excavations undertaken at the Campo de Hockey site in 2008 led to the identification of a major Neolithic necropolis in the former Island of San Fernando (Bay of Cádiz). This work presents the results of the latest studies, which indicate that the site stands as one of the oldest megalithic necropolises in the Iberian Peninsula. The main aim of this work is to present with precision the chronology of this necropolis through a Bayesian statistical model that confirms that the necropolis was in use from c. 4300 to 3800 cal BC. The presence of prestige grave goods in the earliest and most monumental graves suggest that the Megalithism phenomenon emerged in relation to maritime routes linked to the distribution of exotic products. We also aim to examine funerary practices in these early megalithic communities, and especially their way of life and the social reproduction system. As such, in addition to the chronological information and the Bayesian statistics, we provide the results of a comprehensive interdisciplinary study, including anthropological, archaeometric and genetic data.
Assuntos
Hóquei , Antropologia , Arqueologia , Teorema de Bayes , Europa (Continente) , História AntigaRESUMO
Mercury (Hg) is a pervasive environmental contaminant that accumulates in the organs and tissues of seabirds at concentrations capable of causing acute or long-term adverse health effects. In the present study, Hg concentrations in Adélie penguin (Pygoscelis adeliae) egg membranes and chick feathers served as a proxy for Hg bioavailability in the marine environment surrounding the northern Antarctic Peninsula. Stable isotopes were measured in conjunction with Hg to infer information regarding feeding habits (δ15 N, diet/trophic level; δ13 C, foraging habitat). The Hg concentrations were low relative to toxicity benchmark values associated with adverse health effects in birds and ranged between 0.006 and 0.080 µg g-1 dry weight (n = 65) in egg membranes and 0.140 to 1.05 µg g-1 fresh weight (n = 38) in feathers. Egg membrane δ15 N signatures suggested that females from different breeding colonies had similar diets consisting of lower and higher trophic prey prior to arrival to breeding grounds. In contrast, δ15 N signatures in feathers indicated that chick diet varied by colony. The Hg concentrations demonstrated significant positive relationships with δ15 N, providing support for the hypothesis of Hg biomagnification up the food chain. The δ13 C signatures in both tissue types provided evidence of foraging habitat segregation among populations. The differences in Hg exposure and foraging ecology suggest that each colony has localized foraging behaviors by breeding adults that warrant additional investigation. Environ Toxicol Chem 2021;40:2791-2801. © 2021 SETAC.
Assuntos
Mercúrio , Spheniscidae , Animais , Regiões Antárticas , Monitoramento Ambiental , Plumas/química , Feminino , Cadeia Alimentar , Mercúrio/análiseRESUMO
Sedimentary n-alkanoic acids are ubiquitous in the environment and their carbon isotopic composition is increasingly used to identify the source of organic matter and to reconstruct past climatic and ecological changes. Here we investigate the distribution and carbon isotope ratios of n-alkanoic acids in two sediment profiles influenced by animal excrement in Antarctica. We found that organic matter input from animal excrement is the predominate source of short- and mid-chain n-alkanoic acids in the ornithogenic sediments. Decreased δ13C values are closely related to increased excrement input of penguins and seals that occupied the study site, especially in C16n-alkanoic acid. Long-chain (>C24) n-alkanoic acids likely originate from moss and heterotrophic microbes, and the δ13C values of C26n-alkanoic acid were consistent with organic biomarkers and bio-elements from animal excrement. Two possible processes are suggested to explain the close relationship between C26n-alkanoic acid δ13C values and animal excrement input. All the results indicate that the carbon isotopes of n-alkanoic acids in ornithogenic sediments can be used to indicate historical population change of penguins or seals in Antarctica.
Assuntos
Lipídeos/química , Animais , Regiões Antárticas , Carbono , Isótopos de Carbono , Sedimentos Geológicos , Isótopos de Nitrogênio , Focas Verdadeiras , SpheniscidaeRESUMO
Penguin colonies in Antarctica offer an ideal "natural laboratory" to investigate ecosystem function and the nitrogen (N) cycle. This study assessed the spatial distribution of penguin-derived N from guano and quantitatively assessed its impact on plant N utilization strategies in Victoria Land, Ross Sea region, Antarctica. Soil, moss, and aquatic microbial mats were collected inside and outside an active Adélie penguin (Pygoscelis adeliae) colony and analyzed for δ15N of total and inorganic nitrogen (NH4+-N and NO3--N). The soil total nitrogen (TN), NH4+-N, and NO3--N concentrations, as well as their δ15N values were significantly higher in guano-impacted areas than those in guano-free areas, verifying that guano is an important N source at and near penguin colonies. However, even far from the penguin colonies, soil δ15N values resembled those in penguin colonies, suggesting strong spatial impacts of penguin-derived N. The moss impacted by guano was more enriched in δ15N than in guano-free areas. The δ15N values of NH4+-N and NO3--N in soils covered with moss revealed that the moss might prefer inorganic N in the absence of guano, while the dissolved organic N would become an important source for moss growing on ornithogenic soils. Aquatic microbial mat samples near penguin colonies were 15N-enriched, but 15N-depleted at upland sites.
Assuntos
Spheniscidae , Animais , Regiões Antárticas , Ecossistema , Ciclo do Nitrogênio , SoloRESUMO
We report new discoveries and radiocarbon dates on active and abandoned Adélie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on low-lying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a 'supercolony') by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there.
RESUMO
Radionuclides including (210)Pb, (226)Ra and (137)Cs were analyzed in eight ornithogenic sediment profiles from McMurdo Sound, Ross Sea region, East Antarctica. Equilibration between (210)Pb and (226)Ra were reached in all eight profiles, enabling the determination of chronology within the past two centuries through the Constant Rate of Supply (CRS) model. Calculated fluxes of both (210)Pb and (137)Cs varied drastically among four of the profiles (MB4, MB6, CC and CL2), probably due to differences in their sedimentary environments. In addition, we found the flux data exhibiting a clear decreasing gradient in accordance with their average deposition rate, which was in turn related to the specific location of the profiles. We believe this phenomenon may correspond to global warming of the last century, since warming-induced surface runoff would bring more inflow water and detritus to the coring sites, thus enhancing the difference among the profiles. To verify this hypothesis, the deposition rate against age of the sediments was calculated based on their determined chronology, which showed ascending trends in all four profiles. The significant increase in deposition rates over the last century is probably attributable to recent warming, implying a potential utilization of radionuclides as environmental indicators in this region.
RESUMO
Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure.