Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19(9): 4264-4266, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37483152

RESUMO

N-methyl-D-aspartate (NMDA) receptor (NMDAR) dysregulation is thought to contribute to impaired cognition and neurodegeneration in a variety of brain disorders. In a recent article, Zhong et al. proposed that deficiency of the NMDAR subunit GluN3A may be a primary pathogenic factor in sporadic Alzheimer´s disease (AD) based on evidence for degenerative excitotoxicity and cognitive impairment in aging mice lacking GluN3A. Because the result appeared to be at odds with earlier work where genetic GluN3A deletion enhanced learning in younger mice, we have now compared wild-type and GluN3A knockout mice at later life stages using a congenic mouse strain. Rather than age-dependent cognitive decline or neurodegeneration, we find that the enhanced performance of young adult GluN3A knockouts in memory tasks persists during aging. In sum, our analysis does not support the hypothesis that GluN3A loss underlies cognitive impairment in AD..


Assuntos
Disfunção Cognitiva , Camundongos , Animais , Camundongos Knockout , Disfunção Cognitiva/genética , Receptores de N-Metil-D-Aspartato/genética
2.
JCI Insight ; 9(7)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376950

RESUMO

Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual Ligada ao Cromossomo X , Atrofia Muscular , Animais , Humanos , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/genética , Hormônios Tireóideos
3.
Alzheimers Res Ther ; 13(1): 181, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727970

RESUMO

BACKGROUND: Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and ß-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. We have analyzed whether ApoER2-ICD is able to regulate the expression of other LDL receptors, and we focused on LRP3, the most unknown member of this family. We analyzed LRP3 expression in middle-aged individuals (MA) and in cases with Alzheimer's disease (AD)-related pathology, and the relation of LRP3 with APP. METHODS: The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in the presence of recombinant reelin or Aß42 peptide, were evaluated by microarray, qRT-PCRs, and western blots in SH-SY5Y cells. LRP3 expression was analyzed in human frontal cortex extracts from MA subjects (mean age 51.8±4.8 years) and AD-related pathology subjects [Braak neurofibrillary tangle stages I-II, 68.4±8.8 years; III-IV, 80.4 ± 8.8 years; V-VI, 76.5±9.7 years] by qRT-PCRs and western blot; LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Chloroquine was employed to block the lysosomal/autophagy function. RESULTS: We have identified that ApoER2 overexpression increases LRP3 expression, also after reelin stimulation of ApoER2 signaling. The same occurred following ApoER2-ICD overexpression. In extracts from subjects with AD-related pathology, the levels of LRP3 mRNA and protein were lower than those in MA subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, particularly in the membrane fraction. In cell supernatants, levels of APP fragments from the amyloidogenic (sAPPα) or non-amyloidogenic (sAPPß) pathways, as well as Aß peptides, were drastically reduced with respect to mock-transfected cells. The inhibitor of lysosomal/autophagy function, chloroquine, significantly increased full-length APP, APP-CTF, and sAPPα levels. CONCLUSIONS: ApoER2/reelin signaling regulates LRP3 expression, whose levels are affected in AD; LRP3 is involved in the regulation of APP levels.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Proteínas Relacionadas a Receptor de LDL , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Apolipoproteínas , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Pessoa de Meia-Idade , Proteína Reelina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA