Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(7): 5027-5034, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38780014

RESUMO

This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and ß-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of ß-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Animais , Neurônios/patologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Proteínas tau/metabolismo
2.
Neuropathol Appl Neurobiol ; 49(3): e12904, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020385

RESUMO

AIMS: Selective neuronal vulnerability of hippocampal Cornu Ammonis (CA)-1 neurons is a pathological hallmark of Alzheimer's disease (AD) with an unknown underlying mechanism. We interrogated the expression of tuberous sclerosis complex-1 (TSC1; hamartin) and mTOR-related proteins in hippocampal CA1 and CA3 subfields. METHODS: A human post-mortem cohort of mild (n = 7) and severe (n = 10) AD and non-neurological controls (n = 9) was used for quantitative and semi-quantitative analyses. We also developed an in vitro TSC1 knockdown model in rat hippocampal neurons, and transcriptomic analyses of TSC1 knockdown neuronal cultures were performed. RESULTS: We found a selective increase of TSC1 cytoplasmic inclusions in human AD CA1 neurons with hyperactivation of one of TSC1's downstream targets, the mammalian target of rapamycin complex-1 (mTORC1), suggesting that TSC1 is no longer active in AD. TSC1 knockdown experiments showed accelerated cell death independent of amyloid-beta toxicity. Transcriptomic analyses of TSC1 knockdown neuronal cultures revealed signatures that were significantly enriched for AD-related pathways. CONCLUSIONS: Our combined data point to TSC1 dysregulation as a key driver of selective neuronal vulnerability in the AD hippocampus. Future work aimed at identifying targets amenable to therapeutic manipulation is urgently needed to halt selective neurodegeneration, and by extension, debilitating cognitive impairment characteristic of AD.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Humanos , Ratos , Animais , Doença de Alzheimer/patologia , Esclerose Tuberosa/metabolismo , Hipocampo/patologia , Serina-Treonina Quinases TOR/metabolismo , Neurônios/patologia , Mamíferos/metabolismo
3.
Brain ; 145(12): 4308-4319, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35134111

RESUMO

The anterior optic pathway is one of the preferential sites of involvement in CNS inflammatory demyelinating diseases, such as multiple sclerosis and neuromyelitis optica, with optic neuritis being a common presenting symptom. What is more, optic nerve involvement in these diseases is often subclinical, with optical coherence tomography demonstrating progressive neuroretinal thinning in the absence of optic neuritis. The pathological substrate for these findings is poorly understood and requires investigation. We had access to post-mortem tissue samples of optic nerves, chiasms and tracts from 29 multiple sclerosis (mean age 59.5, range 25-84 years; 73 samples), six neuromyelitis optica spectrum disorders (mean age 56, range 18-84 years; 22 samples), six acute disseminated encephalomyelitis (mean age 25, range 10-39 years; 12 samples) cases and five non-neurological controls (mean age 55.2, range 44-64 years; 16 samples). Formalin-fixed paraffin-embedded samples were immunolabelled for myelin, inflammation (microglial/macrophage, T- and B-cells, complement), acute axonal injury and astrocytes. We assessed the extent and distribution of these markers along the anterior optic pathway for each case in all compartments (i.e. parenchymal, perivascular and meningeal), where relevant. Demyelinated plaques were classified as active based on established criteria. In multiple sclerosis, demyelination was present in 82.8% of cases, of which 75% showed activity. Microglia/macrophage and lymphocyte inflammation were frequently found both in the parenchymal and meningeal compartments in non-demyelinated regions. Acute axonal injury affected 41.4% of cases and correlated with extent of inflammatory activity in each compartment, even in cases that died at advanced age with over 20 years of disease duration. An antero-posterior gradient of anterior optic pathway involvement was observed with optic nerves being most severely affected by inflammation and acute axonal injury compared with the optic tract, where a higher proportion of remyelinated plaques were seen. In neuromyelitis optica spectrum disorder, cases with a history of optic neuritis had extensive demyelination and lost aquaporin-4 reactivity. In contrast, those without prior optic neuritis did not have demyelination but rather diffuse microglial/macrophage, T- and B-lymphocyte inflammation in both parenchymal and meningeal compartments, and acute axonal injury was present in 75% of cases. Acute demyelinating encephalomyelitis featured intense inflammation, and perivenular demyelination in 33% of cases. Our findings suggest that chronic inflammation is frequent and leads to neurodegeneration in multiple sclerosis and neuromyelitis optica, regardless of disease stage. The chronic inflammation and subsequent neurodegeneration occurring along the optic pathway broadens the plaque-centred view of these diseases and partly explains the progressive neuroretinal changes observed in optic coherence tomography studies.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Neurite Óptica , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adolescente , Adulto Jovem , Criança , Neuromielite Óptica/patologia , Nervo Óptico/patologia , Neurite Óptica/patologia , Esclerose Múltipla/patologia , Inflamação/patologia
4.
Stroke ; 53(12): 3696-3705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205142

RESUMO

BACKGROUND: Cerebral small vessel disease (SVD) is common in older people and causes lacunar stroke and vascular cognitive impairment. Risk factors include old age, hypertension and variants in the genes COL4A1/COL4A2 encoding collagen alpha-1(IV) and alpha-2(IV), here termed collagen-IV, which are core components of the basement membrane. We tested the hypothesis that increased vascular collagen-IV associates with clinical hypertension and with SVD in older persons and with chronic hypertension in young and aged primates and genetically hypertensive rats. METHODS: We quantified vascular collagen-IV immunolabeling in small arteries in a cohort of older persons with minimal Alzheimer pathology (N=52; 21F/31M, age 82.8±6.95 years). We also studied archive tissue from young (age range 6.2-8.3 years) and older (17.0-22.7 years) primates (M mulatta) and compared chronically hypertensive animals (18 months aortic stenosis) with normotensives. We also compared genetically hypertensive and normotensive rats (aged 10-12 months). RESULTS: Collagen-IV immunolabeling in cerebral small arteries of older persons was negatively associated with radiological SVD severity (ρ: -0.427, P=0.005) but was not related to history of hypertension. General linear models confirmed the negative association of lower collagen-IV with radiological SVD (P<0.017), including age as a covariate and either clinical hypertension (P<0.030) or neuropathological SVD diagnosis (P<0.022) as fixed factors. Reduced vascular collagen-IV was accompanied by accumulation of fibrillar collagens (types I and III) as indicated by immunogold electron microscopy. In young and aged primates, brain collagen-IV was elevated in older normotensive relative to young normotensive animals (P=0.029) but was not associated with hypertension. Genetically hypertensive rats did not differ from normotensive rats in terms of arterial collagen-IV. CONCLUSIONS: Our cross-species data provide novel insight into sporadic SVD pathogenesis, supporting insufficient (rather than excessive) arterial collagen-IV in SVD, accompanied by matrix remodeling with elevated fibrillar collagen deposition. They also indicate that hypertension, a major risk factor for SVD, does not act by causing accumulation of brain vascular collagen-IV.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Acidente Vascular Cerebral Lacunar , Animais , Ratos , Doenças de Pequenos Vasos Cerebrais/complicações , Acidente Vascular Cerebral Lacunar/complicações , Hipertensão/complicações , Encéfalo/patologia , Pressão Sanguínea , Colágeno Tipo IV/genética
5.
Brain ; 143(10): 2998-3012, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875311

RESUMO

Vascular comorbidities have a deleterious impact on multiple sclerosis clinical outcomes but it is unclear whether this is mediated by an excess of extracranial vascular disease (i.e. atherosclerosis) and/or of cerebral small vessel disease or worse multiple sclerosis pathology. To address these questions, a study using a unique post-mortem cohort wherein whole body autopsy reports and brain tissue were available for interrogation was established. Whole body autopsy reports were used to develop a global score of systemic vascular disease that included aorta and coronary artery atheroma, cardiac hypertensive disease, myocardial infarction and ischaemic stroke. The score was applied to 85 multiple sclerosis cases (46 females, age range 39 to 84 years, median 62.0 years) and 68 control cases. Post-mortem brain material from a subset of the multiple sclerosis (n = 42; age range 39-84 years, median 61.5 years) and control (n = 39) cases was selected for detailed neuropathological study. For each case, formalin-fixed paraffin-embedded tissue from the frontal and occipital white matter, basal ganglia and pons was used to obtain a global cerebral small vessel disease score that captured the presence and/or severity of arteriolosclerosis, periarteriolar space dilatation, haemosiderin leakage, microinfarcts, and microbleeds. The extent of multiple sclerosis-related pathology (focal demyelination and inflammation) was characterized in the multiple sclerosis cases. Regression models were used to investigate the influence of disease status on systemic vascular disease and cerebral small vessel disease scores and, in the multiple sclerosis group, the relationship between multiple sclerosis-related pathology and both vascular scores. We show that: (i) systemic cardiovascular burden, and specifically atherosclerosis, is lower and cerebral small vessel disease is higher in multiple sclerosis cases that die at younger ages compared with control subjects; (ii) the association between systemic vascular disease and cerebral small vessel disease is stronger in patients with multiple sclerosis compared with control subjects; and (iii) periarteriolar changes, including periarteriolar space dilatation, haemosiderin deposition and inflammation, are key features of multiple sclerosis pathology outside the classic demyelinating lesion. Our data argue against a common primary trigger for atherosclerosis and multiple sclerosis but suggest that an excess burden of cerebral small vessel disease in multiple sclerosis may explain the link between vascular comorbidity and accelerated irreversibility disability.


Assuntos
Autopsia/métodos , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Doenças de Pequenos Vasos Cerebrais/patologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Hum Brain Mapp ; 40(15): 4417-4431, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31355989

RESUMO

To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease-related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders.

7.
Ann Neurol ; 82(2): 259-270, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28719020

RESUMO

OBJECTIVE: Neuronal loss, a key substrate of irreversible disability in multiple sclerosis (MS), is a recognized feature of MS cortical pathology of which the cause remains unknown. Fibrin(ogen) deposition is neurotoxic in animal models of MS, but has not been evaluated in human progressive MS cortex. The aim of this study was to investigate the extent and distribution of fibrin(ogen) in progressive MS cortex and elucidate its relationship with neurodegeneration. METHODS: A postmortem cohort of pathologically confirmed MS (n = 47) and control (n = 10) cases was used. The extent and distribution of fibrin(ogen) was assessed and related to measures of demyelination, inflammation, and neuronal density. In a subset of cases (MS, n = 20; control, n = 10), expression of plasminogen activator inhibitor 1 (PAI-1), a key enzyme in the fibrinolytic cascade, was assessed and related to the extent of fibrin(ogen). RESULTS: Motor cortical fibrin(ogen) deposition was significantly over-represented in MS compared to control cases in all compartments studied (ie, extracellular [p = 0.001], cell body [p = 0.003], and neuritic/glial-processes [p = 0.004]). MS cases with high levels of extracellular fibrin(ogen) had significantly upregulated PAI-1 expression in all cortical layers assessed (p < 0.05) and reduced neuronal density (p = 0.017), including in the functionally-relevant layer 5 (p = 0.001). INTERPRETATION: For the first time, we provide unequivocal evidence that fibrin(ogen) is extensively deposited in progressive MS motor cortex, where regulation of fibrinolysis appears perturbed. Progressive MS cases with severe fibrin(ogen) deposition have significantly reduced neuronal density. Future studies are needed to elucidate the provenance and putative neurotoxicity of fibrin(ogen), and its potential impact on clinical disability. Ann Neurol 2017;82:259-270.


Assuntos
Fibrina/metabolismo , Fibrinogênio/metabolismo , Córtex Motor/metabolismo , Córtex Motor/patologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/patologia , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/complicações , Degeneração Neural/complicações , Inibidor 1 de Ativador de Plasminogênio/biossíntese
8.
Immunity ; 30(3): 348-57, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19303388

RESUMO

Environmental factors account for 75% of the risk of developing multiple sclerosis (MS). Numerous infections have been suspected as environmental disease triggers, but none of them has consistently been incriminated, and it is unclear how so many different infections may play a role. We show that a microbial peptide, common to several major classes of bacteria, can induce MS-like disease in humanized mice by crossreacting with a T cell receptor (TCR) that also recognizes a peptide from myelin basic protein, a candidate MS autoantigen. Structural analysis demonstrates this crossreactivity is due to structural mimicry of a binding hotspot shared by self and microbial antigens, rather than to degenerate TCR recognition. Biophysical studies reveal that the autoreactive TCR binding affinity is markedly lower for the microbial (mimicry) peptide than for the autoantigenic peptide. Thus, these data suggest a possible explanation for the difficulty in incriminating individual infections in the development of MS.


Assuntos
Doenças Autoimunes/imunologia , Proteínas de Bactérias/imunologia , Mimetismo Molecular/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Cerebelo/patologia , Reações Cruzadas/imunologia , Drosophila , Escherichia coli/imunologia , Antígenos HLA-D/metabolismo , Antígeno HLA-DR2/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Esclerose Múltipla/imunologia , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Medula Espinal/patologia , Linfócitos T/fisiologia
9.
Neuropathol Appl Neurobiol ; 41(3): 371-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24964187

RESUMO

AIM: Multiple sclerosis (MS) is a common and heterogeneous CNS inflammatory demyelinating disease. The HLA-DRB1 locus may influence clinical outcome. MS cortical pathology is frequent and correlates with measures of clinical disability, including motoric dysfunction that is a predominant feature of disease progression. The influence of HLA-DRB1*15 on motor cortical pathology is unknown. METHODS: A pathologically confirmed age- and sex-matched HLA-DRB1*15+ (n = 21) and HLA-DRB1*15- (n = 26) MS post-mortem cohort was used for detailed pathologic analyses. For each case, adjacent sections of motor cortex were stained for myelin and inflammation, to evaluate the extent and distribution of motor cortical pathology. A subset of MS cases (n = 42) had spinal cord (SC) pathologic outcome data available for comparison. RESULTS: Motor cortical demyelination was more pronounced in younger cases (r = -0.337, P < 0.05), with MS cases carrying the HLA-DRB1*15 allele driving this effect (r = -0.612, P < 0.01). HLA-DRB1*15+ MS cases had more severe motor cortical parenchymal (P < 0.05), perivascular (P < 0.05) and meningeal (P < 0.05) T-cell inflammation compared to HLA-DRB1*15- cases. HLA-DRB1*15 status significantly influenced the extent of motor cortical microglial burden in both NAGM (P < 0.0001) and lesions (P < 0.01) in MS cases. Relationships between the extent of motor cortical and SC pathology were limited, but when present were primarily driven by HLA-DRB1*15+ cases. CONCLUSION: HLA-DRB1*15 status has a significant association with the extent of inflammation in the MS motor cortex, the extent of demyelination in younger MS cases, and influences relationships between motor cortical and SC pathology.


Assuntos
Cadeias HLA-DRB1/genética , Córtex Motor/patologia , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Cadáver , Predisposição Genética para Doença , Humanos , Inflamação/patologia
10.
Brain ; 137(Pt 5): 1524-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24618270

RESUMO

Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer's disease (n = 49), vascular dementia (n = 17) and control brains (n = 33) from the South West Dementia Brain Bank (Bristol), we have now examined the relationship between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and several other proteins involved in regulating white matter vascularity and blood flow. Across the three cohorts, white matter perfusion, indicated by the ratio of myelin-associated glycoprotein to proteolipid protein 1, correlated positively with the concentration of the vasoconstrictor, endothelin 1 (P = 0.0005), and negatively with the concentration of the pro-angiogenic protein, vascular endothelial growth factor (P = 0.0015). The activity of angiotensin-converting enzyme, which catalyses production of the vasoconstrictor angiotensin II was not altered. In samples of frontal white matter from an independent (Oxford, UK) cohort of post-mortem brains (n = 74), we confirmed the significant correlations between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and both endothelin 1 and vascular endothelial growth factor. We also assessed microvessel density in the Bristol (UK) samples, by measurement of factor VIII-related antigen, which we showed to correlate with immunohistochemical measurements of vessel density, and found factor VIII-related antigen levels to correlate with the level of vascular endothelial growth factor (P = 0.0487), suggesting that upregulation of vascular endothelial growth factor tends to increase vessel density in the white matter. We propose that downregulation of endothelin 1 and upregulation of vascular endothelial growth factor in the context of reduced ratio of myelin-associated glycoprotein to proteolipid protein 1 are likely to be protective physiological responses to reduced white matter perfusion. Further analysis of the Bristol cohort showed that endothelin 1 was reduced in the white matter in Alzheimer's disease (P < 0.05) compared with control subjects, but not in vascular dementia, in which endothelin 1 tended to be elevated, perhaps reflecting abnormal regulation of white matter perfusion in vascular dementia. Our findings demonstrate the potential of post-mortem measurement of myelin proteins and mediators of vascular function, to assess physiological and pathological processes involved in the regulation of cerebral perfusion in Alzheimer's disease and vascular dementia.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Demência Vascular/patologia , Fibras Nervosas Mielinizadas/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Endotelina-1/metabolismo , Fator VIII/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glicoproteína Associada a Mielina/metabolismo , Fibras Nervosas Mielinizadas/patologia , Peptidil Dipeptidase A/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA