RESUMO
This article explores the magnifying lenses of the COVID-19 syndemic to highlight how people racialized as migrants and refugees have been-and continue to be-disproportionally harmed. We use empirical evidence collected in our scholarly/activist work in Europe, Africa, South Asia, and the United States to examine migrant injustice as being produced by a combination of power structures and relations working to maintain colonial global orders and inequalities. This is what has been defined as "border imperialism." Our data, complemented by evidence from transnational solidarity groups, show that border imperialism has further intersected with the hygienic-sanitary logics of social control at play during the COVID-19 period. This intersection has resulted in increasingly coercive methods of restraining people on the move, as well as in increased-and new-forms of degradation of their lives, that is, an overall multiplication of border violences. At the same time, however, COVID-19 has provided a unique opportunity for grassroot solidarity initiatives and resistance led by people on the move to be amplified and extended. We conclude by emphasizing the need for community psychologists to take a more vigorous stance against oppressive border imperialist regimes and the related forms of violence they re/enact.
Assuntos
COVID-19 , Migrantes , Humanos , Sindemia , Violência , Justiça SocialRESUMO
The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Reposicionamento de Medicamentos , Ligantes , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica MolecularRESUMO
The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).
RESUMO
N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis. Since most derivatization techniques are notoriously time-consuming, some commercial analytical kits have been developed to speed up N-deglycosylation and N-glycan labelling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies (mAbs). We exploited the analytical capabilities of RapiFluor-MS (RFMS) to perform, by a slightly modified protocol, a detailed N-glycan characterization of total serum and single serum glycoproteins from specific patients with CDG (MAN1B1-CDG, ALG12-CDG, MOGS-CDG, TMEM199-CDG). This strategy, accomplished by Hydrophilic Interaction Chromatography (HILIC)-UPLC-ESI-MS separation of the RFMS derivatized N-glycans, allowed us to uncover structural details of patients serum released N-glycans, thus extending the current knowledge on glycan profiles in these individual glycosylation diseases. The applied methodology enabled to differentiate in some cases either structural isomers and isomers differing in the linkage type. All the here reported applications demonstrated that RFMS method, coupled to HILIC-UPLC-ESI-MS, represents a sensitive high throughput approach for serum N-glycome analysis and a valuable option for glycan detection and separation particularly for isomeric species.
Assuntos
Defeitos Congênitos da Glicosilação/sangue , Polissacarídeos/sangue , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Química do Sangue/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Isomerismo , Manosidases/deficiência , Proteínas de Membrana/deficiência , alfa-Glucosidases/metabolismoRESUMO
During the cell cycle, DNA suffers several lesions that need to be repaired prior to entry into mitosis to preserve genome integrity in daughter cells. Toward this aim, cells have developed complex enzymatic machinery, the so-called DNA damage response (DDR), which is able to repair DNA, temporarily stopping the cell cycle to provide more time to repair, or if the damage is too severe, inducing apoptosis. This DDR mechanism is considered the main source of resistance to DNA-damaging therapeutic treatments in oncology. Recently, cancer stem cells (CSCs), which are a small subset of tumor cells, were identified as tumor-initiating cells. CSCs possess self-renewal potential and persistent tumorigenic capacity, allowing for tumor re-growth and relapse. Compared with cancer cells, CSCs are more resistant to therapeutic treatments. Wee1 is the principal gatekeeper for both G2/M and S-phase checkpoints, where it plays a key role in cell cycle regulation and DNA damage repair. From this perspective, Wee1 inhibition might increase the effectiveness of DNA-damaging treatments, such as radiotherapy, forcing tumor cells and CSCs to enter into mitosis, even with damaged DNA, leading to mitotic catastrophe and subsequent cell death.
Assuntos
Biomarcadores Tumorais , Proteínas de Ciclo Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Tirosina Quinases/genética , Tolerância a Radiação/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Terapia Combinada , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Família Multigênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Especificidade de Órgãos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismoRESUMO
Cancer is a multifactorial disease that affects millions of people every year and is one of the most common causes of death in the world. The high mortality rate is very often linked to late diagnosis; in fact, nowadays there are a lack of efficient and specific markers for the early diagnosis and prognosis of cancer. In recent years, the discovery of new diagnostic markers, including microRNAs (miRNAs), has been an important turning point for cancer research. miRNAs are small, endogenous, non-coding RNAs that regulate gene expression. Compelling evidence has showed that many miRNAs are aberrantly expressed in human carcinomas and can act with either tumor-promoting or tumor-suppressing functions. miR-19a is one of the most investigated miRNAs, whose dysregulated expression is involved in different types of tumors and has been potentially associated with the prognosis of cancer patients. The aim of this review is to investigate the role of miR-19a in cancer, highlighting its involvement in cell proliferation, cell growth, cell death, tissue invasion and migration, as well as in angiogenesis. On these bases, miR-19a could prove to be truly useful as a potential diagnostic, prognostic, and therapeutic marker.
Assuntos
MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/genética , Proliferação de Células/genética , Detecção Precoce de Câncer/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Masculino , Modelos Genéticos , Invasividade Neoplásica/genética , Neoplasias/patologia , Oncogenes , PrognósticoRESUMO
After almost two years from its first evidence, the COVID-19 pandemic continues to afflict people worldwide, highlighting the need for multiple antiviral strategies. SARS-CoV-2 main protease (Mpro/3CLpro) is a recognized promising target for the development of effective drugs. Because single target inhibition might not be sufficient to block SARS-CoV-2 infection and replication, multi enzymatic-based therapies may provide a better strategy. Here we present a structural and biochemical characterization of the binding mode of MG-132 to both the main protease of SARS-CoV-2, and to the human Cathepsin-L, suggesting thus an interesting scaffold for the development of double-inhibitors. X-ray diffraction data show that MG-132 well fits into the Mpro active site, forming a covalent bond with Cys145 independently from reducing agents and crystallization conditions. Docking of MG-132 into Cathepsin-L well-matches with a covalent binding to the catalytic cysteine. Accordingly, MG-132 inhibits Cathepsin-L with nanomolar potency and reversibly inhibits Mpro with micromolar potency, but with a prolonged residency time. We compared the apo and MG-132-inhibited structures of Mpro solved in different space groups and we identified a new apo structure that features several similarities with the inhibited ones, offering interesting perspectives for future drug design and in silico efforts.
Assuntos
Tratamento Farmacológico da COVID-19 , Catepsina L/efeitos dos fármacos , Proteases 3C de Coronavírus/efeitos dos fármacos , Leupeptinas/química , Leupeptinas/farmacologia , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Domínio Catalítico/efeitos dos fármacos , Catepsina L/química , Proteases 3C de Coronavírus/química , Desenho de Fármacos , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Replicação Viral/efeitos dos fármacos , Difração de Raios XRESUMO
Plants are the everlasting source of a wide spectrum of specialized metabolites, characterized by wide variability in term of chemical structures and different biological properties such antiviral activity. In the search for novel antiviral agents against Human Immunodeficiency Virus type 1 (HIV-1) from plants, the phytochemical investigation of Scrophularia trifoliata L. led us to isolate and characterize four flavonols glycosides along with nine iridoid glycosides, two of them, 5 and 13, described for the first time. In the present study, we investigated, for the first time, the contents of a methanol extract of S. trifoliata leaves, in order to explore the potential antiviral activity against HIV-1. The antiviral activity was evaluated in biochemical assays for the inhibition of HIV-1Reverse Transcriptase (RT)-associated Ribonuclease H (RNase H) activity and HIV-1 Integrase (IN). Three isolated flavonoids, rutin, kaempferol-7-O-rhamnosyl-3-O-glucopyranoside, and kaempferol-3-O-glucopyranoside, 8-10, inhibited specifically the HIV-1 IN activity at submicromolar concentration, with the latter being the most potent, showing an IC50 value of 24 nM.
Assuntos
Flavonóis/química , Flavonóis/farmacologia , HIV-1/efeitos dos fármacos , Iridoides/química , Iridoides/farmacologia , Scrophularia/química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Concentração Inibidora 50 , Folhas de Planta/químicaRESUMO
Current therapeutic protocols for the treatment of HIV infection consist of the combination of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds were active towards the two functions, although at different concentrations. The substitution pattern on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl} benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP (IC50 = 8.0 mM) HIV RT-associated functions.
Assuntos
Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/metabolismo , Ribonuclease H/antagonistas & inibidores , Tiazóis/química , Tiazóis/farmacologia , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tiazóis/síntese químicaRESUMO
Drawingvoice 2.0 is an instructional method of collaborative pencil and paper drawing to use in the school classroom, followed by Facebook interaction on the drawing produced in class. It is based on a participatory and meta reflective approach, explicitly aimed at deconstructing, negotiating, and reconstructing the meaning that students attribute to themselves regarding their professional expectations and educational pathways. In particular, the collaborative pencil and paper drawing allows for the student's emotional symbolisation processes underlying their educational pathway. Drawingvoice 2.0 induces a multidimensional cognitive and meta-cognitive process further supported by the following interaction on Facebook. Therefore, the World Wide Web is the added resource for sharing and deepening the classmates' discussion. Finally, Drawingvoice 2.0 supported structural group interaction and was an important supportive and instructional method to bring about transformational and developmental training practices. As the main result, in our experience, psychology students increased their reflectivity about their strengths and threats in being psychologists within their cultural contexts and potential positive resources underlying their choice. Drawingvoice 2.0 thus enhanced their self-awareness about the lights and shadows of their training and future professional career.
RESUMO
Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted. Thus, in this article, the most active 2-(3,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one 1 was selected as the hit scaffold and several isosteric substitutions of the thiophene ring were performed. A novel series of highly active RNase H allosteric quinazolinone inhibitors was thus obtained. To determine their target selectivity, they were tested against RT-associated RNA-dependent DNA polymerase (RDDP) and integrase (IN). Interestingly, none of the compounds were particularly active on (RDDP) but many displayed micromolar to submicromolar activity against IN.
Assuntos
Fármacos Anti-HIV/síntese química , Transcriptase Reversa do HIV/metabolismo , Pirimidinonas/química , Quinazolinonas/síntese química , Inibidores da Transcriptase Reversa/síntese química , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Domínio Catalítico , Desenho de Fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Quinazolinonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade , Tiofenos/químicaRESUMO
MicroMED (Micro Martian Environmental Dust Systematic Analyzer (MEDUSA)) instrument was selected for the ExoMars 2020 mission to study the airborne dust on the red planet through in situ measurements of the size distribution and concentration. This characterization has never been done before and would have a strong impact on the understanding of Martian climate and Aeolian processes on Mars. The MicroMED is an optical particle counter that exploits the measured intensity of light scattered by dust particles when crossing a collimated laser beam. The measurement technique is well established for laboratory and ground applications but in order to be mounted on the Dust Suite payload within the framework of ExoMars 2020 mission, the instrument must be compatible with harsh mechanical and thermal environments and the tight mass budget of the mission payload. This work summarizes the thermo-mechanical design of the instrument, the manufacturing of the flight model and its successful qualification in expected thermal and mechanical environments.
RESUMO
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2'-deoxyguanosines have been singly replaced by 8-methyl-2'-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Quadruplex G , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Oligonucleotídeos/farmacologia , Dicroísmo Circular , Dimerização , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Temperatura de TransiçãoRESUMO
The persistence of the AIDS epidemic, and the life-long treatment required, indicate the constant need of novel HIV-1 inhibitors. In this scenario the HIV-1 Reverse Transcriptase (RT)-associated ribonuclease H (RNase H) function is a promising drug target. Here we report a series of compounds, developed on the 2-amino-6-(trifluoromethyl)nicotinic acid scaffold, studied as promising RNase H dual inhibitors. Among the 44 tested compounds, 34 inhibited HIV-1 RT-associated RNase H function in the low micromolar range, and seven of them showed also to inhibit viral replication in cell-based assays with a selectivity index up to 10. The most promising compound, 21, inhibited RNase H function with an IC50 of 14 µM and HIV-1 replication in cell-based assays with a selectivity index greater than 10. Mode of action studies revealed that compound 21 is an allosteric dual-site compound inhibiting both HIV-1 RT functions, blocking the polymerase function also in presence of mutations carried by circulating variants resistant to non-nucleoside inhibitors, and the RNase H function interacting with conserved regions within the RNase H domain. Proving compound 21 as a promising lead for the design of new allosteric RNase H inhibitors active against viral replication with not significant cytotoxic effects.
Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Replicação Viral/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Linhagem Celular Tumoral , Transcriptase Reversa do HIV/metabolismo , Humanos , Ribonuclease H/metabolismoRESUMO
Analysing antepartum and intrapartum computerised cardiotocographic (cCTG) parameters in physiological term pregnancies with nuchal (NC) or body cord (BC), in order to correlate them with labour events and neonatal outcome. We enrolled 808 pregnant women, composed of 264 with 'one NC', 121 with 'multiple NCs', 39 with BC and 384 with 'no NC', were monitored from the 37th week of gestation before labour, while 49 pregnant women with 'one or more NCs' and 47 with 'no NCs' were analysed during labour. No differences in maternal characteristics, foetal pH at birth and 5-min Apgar score were observed. The birth weight was significantly lower in the 'multiple NCs' group, while 1-minute Apgar score was lower in the BC group than the other groups, respectively. No relevant differences in cCTG parameters were observed, except for LTI, Delta and number of variable decelerations in antepartum period and only variable deceleration in intrapartum period.Impact statementWhat is already known on this subject? Ultrasound cannot predict which foetuses with NCs are likely to have problem during labour. The question arose if single or multiple NC could affects FHR monitoring prior and during labour.What do the results of this study add? Computerised cardiotocography (cCTG) is a standardised method developed to reduce inter- and intra-observer variability and the poor reproducibility of visual analysis. Few studies have investigated the influence of NCs on FHR variability and, to our knowledge, no one has evaluated its linear and nonlinear characteristics in antepartum and intrapartum period using a computerised analysis system. No differences in maternal characteristics, foetal pH at birth and 5-min Apgar score were observed. Birth weight was significantly lower in the 'multiple NCs' group, while 1-min Apgar score was lower in the BC group than the other groups, respectively. Foetuses with 'one or more NCs' evidenced a larger number of prolonged second stage and meconium-stained liquor cases, while the operative vaginal delivery and emergency caesarean section rates were unchanged. No relevant differences in cCTG parameters were observed, except for LTI, Delta and number of variable decelerations in antepartum period and only variable deceleration in intrapartum period.What are the implications of these findings for clinical practice and/or further research? cCTG monitoring results confirmed their usefulness for assessing the state of good oxygenation for all foetuses investigated.
Assuntos
Cardiotocografia/estatística & dados numéricos , Frequência Cardíaca Fetal/fisiologia , Trabalho de Parto/fisiologia , Cordão Nucal/fisiopatologia , Nascimento a Termo/fisiologia , Peso ao Nascer , Parto Obstétrico/métodos , Parto Obstétrico/estatística & dados numéricos , Feminino , Humanos , Recém-Nascido , Variações Dependentes do Observador , Gravidez , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
Congenital disorders of glycosylation (CDG) are genetic diseases characterized by deficient synthesis (CDG type I) and/or abnormal processing (CDG type II) of glycan moieties linked to protein and lipids. The impact of the molecular defects on protein glycosylation and in turn on the clinical phenotypes of patients with CDG is not yet understood. ALG12-CDG is due to deficiency of ALG12 α1,6-mannosyltransferase that adds the eighth mannose residue on the dolichol-PP-oligosaccharide precursor in the endoplasmic reticulum. ALG12-CDG is a severe multisystem disease associated with low to deficient serum immunoglobulins and recurrent infections. We thoroughly investigated the glycophenotype in a patient with novel ALG12 variants and immunodeficiency. We analyzed serum native transferrin, as first line test for CDG and we profiled serum IgG and total serum N-glycans by a combination of consolidated (N-glycan analysis by MALDI MS) and innovative mass spectrometry-based protocols, such as GlycoWorks RapiFluor N-glycan analysis coupled with LC-ESI MS. Intact serum transferrin showed, as expected for a CDG type I defect, underoccupancy of N-glycosylation sites. Surprisingly, total serum proteins and IgG N-glycans showed some specific changes, consisting in accumulating amounts of definite high-mannose and hybrid structures. As a whole, ALG12-CDG behaves as a dual CDG (CDG-I and II defects) and it is associated with distinct, abnormal glycosylation of total serum and IgG N-glycans. Glycan profiling of target glycoproteins may endorse the molecular defect unraveling the complex clinical phenotype of CDG patients.
Assuntos
Defeitos Congênitos da Glicosilação/genética , Deficiência de IgG/genética , Imunoglobulinas/genética , Manosiltransferases/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Glicoproteínas/sangue , Glicosilação , Humanos , Deficiência de IgG/sangue , Deficiência de IgG/metabolismo , Deficiência de IgG/patologia , Imunoglobulinas/sangue , Imunoglobulinas/deficiência , Lactente , Masculino , Manosiltransferases/sangue , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Polissacarídeos/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transferrina/genética , Transferrina/metabolismo , Sequenciamento do ExomaRESUMO
AIM: The early-onset intrauterine growth restriction (IUGR) is associated with severe placental insufficiency and Doppler abnormalities. The late-onset IUGR is associated with mild placental insufficiency and normal Doppler velocimetry. The computerized cardiotocographic (cCTG) monitoring is used to evaluate the fetal well-being in pregnancies complicated by IUGR. Our aim was to investigate the cardiotocographic characteristics of IUGR fetuses and to identify every cCTG difference between Healthy and IUGR fetuses. METHODS: Four hundred thirty pregnant women were enrolled starting from the 28th week of gestation until the time of delivery: 200 healthy and 230 IUGR fetuses. Fetal heart rate (FHR) baseline (FHR), short-term variability (STV), long-term irregularity (LTI), delta, interval index (II), approximate entropy (ApEn), high frequency (HF), low frequency (LF), movement frequency (MF), LF/(HF + MF) ratio (LF/(HF + MF)) and number of decelerations were examined. Newborn baby data were also collected. RESULTS: The parameters of short- and medium-term variability discriminate between IUGR and healthy fetuses before 36 weeks including FHR, STV, LTI and delta discriminate between each subgroup of IUGR were compared to each one of the other two (P < 0.05). CONCLUSION: cCTG is a useful tool for the evaluation of chronic hypoxemia, which causes a delay in the maturation of all components of the autonomic and central nervous system. However, cCTG requires integration with fetal ultrasound and Doppler vessels evaluation to improve the ability to predict the neonatal outcome.
Assuntos
Cardiotocografia/estatística & dados numéricos , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/fisiopatologia , Frequência Cardíaca Fetal , Hipóxia/diagnóstico por imagem , Adulto , Cardiotocografia/métodos , Feminino , Idade Gestacional , Humanos , Hipóxia/embriologia , Hipóxia/fisiopatologia , Recém-Nascido , Gravidez , Resultado da Gravidez , Ultrassonografia Doppler/métodos , Ultrassonografia Doppler/estatística & dados numéricos , Ultrassonografia Pré-Natal/métodos , Ultrassonografia Pré-Natal/estatística & dados numéricosRESUMO
MicroMED is an optical particle counter that will be part of the ExoMars 2020 mission. Its goal is to provide the first ever in situ measurements of both size distribution and concentration of airborne Martian dust. The instrument samples Martian air, and it is based on an optical system that illuminates the sucked fluid by means of a collimated laser beam and detects embedded dust particles through their scattered light. By analyzing the scattered light profile, it is possible to obtain information about the dust grain size and speed. To do that, MicroMED's fluid dynamic design should allow dust grains to cross the laser-illuminated sensing volume. The instrument's Elegant Breadboard was previously developed and tested, and Computational Fluid Dynamic (CFD) analysis enabled determining its criticalities. The present work describes how the design criticalities were solved by means of a CFD simulation campaign. At the same time, it was possible to experimentally validate the results of the analysis. The updated design was then implemented to MicroMED's Flight Model.
RESUMO
Drawing on almost 3 years of fieldwork, comprising qualitative interviews and ethnographic observations, this study provides an exploration into the detention of illegalized non-citizens in Italy. Taking the largest detention center as a case study, the fabric of everyday life and the lived experiences of people, both detainees and professional actors, are the focus of examination. An ecological community psychology framework, with a focus on justice, guided the data collection, analysis, and interpretation. Findings highlight the oppressive qualities of detention, and its ripple effects on people's life spaces. Scarcity of resources, activities, and information created a very distressing environment for detainees, also enhancing feelings of powerlessness and frustration in professionals willing to assist them. Uncertainty and instability, rather than coercion or discipline, emerged as modes of governing and dominating. Bound in a different space and time, detainees were turned into unwanted and expendable others, their confinement becoming a means to extract profit from them. Yet, people languishing in these sites displayed an extraordinary ability to cope with, resist, and challenge the persisting conditions of injustice they endured. We conclude by highlighting the potential of the proposed framework, and discussing broader implications of our findings and avenues for research and action.
Assuntos
Meio Social , Estresse Psicológico/psicologia , Imigrantes Indocumentados/psicologia , Adaptação Psicológica , Adolescente , Adulto , Antropologia Cultural , Feminino , Humanos , Entrevistas como Assunto , Itália , Masculino , Pessoa de Meia-Idade , Estudos de Casos Organizacionais , Prisões , Justiça Social , Adulto JovemRESUMO
Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 µM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.