Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749382

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Assuntos
Brônquios , COVID-19 , Células Gigantes , Interferons , Mucosa Respiratória , SARS-CoV-2 , Idoso , Brônquios/imunologia , Brônquios/virologia , COVID-19/imunologia , COVID-19/virologia , Criança , Suscetibilidade a Doenças , Células Gigantes/imunologia , Células Gigantes/virologia , Humanos , Interferons/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/imunologia , Interferon lambda
2.
Am J Respir Crit Care Med ; 207(4): 416-426, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108144

RESUMO

Rationale: Children with preschool wheezing represent a very heterogeneous population with wide variability regarding their clinical, inflammatory, obstructive, and/or remodeling patterns. We hypothesized that assessing bronchial remodeling would help clinicians to better characterize severe preschool wheezers. Objectives: The main objective was to identify bronchial remodeling-based latent classes of severe preschool wheezers. Secondary objectives were to compare cross-sectional and longitudinal clinical and biological data between classes and to assess the safety of bronchoscopy. Methods: This double-center prospective study (NCT02806466) included severe preschool wheezers (1-5 yr old) requiring fiberoptic bronchoscopy. Bronchial remodeling parameters (i.e., epithelial integrity, reticular basement membrane [RBM] thickness, mucus gland, fibrosis and bronchial smooth muscle [BSM] areas, the density of blood vessels, and RBM-BSM distance) were assessed and evaluated by latent class analysis. An independent cohort of severe preschool wheezers (NCT04558671) was used to validate our results. Measurements and Main Results: Fiberoptic bronchoscopy procedures were well tolerated. A two-class model was identified: Class BR1 was characterized by increased RBM thickness, normalized BSM area, the density of blood vessels, decreased mucus gland area, fibrosis, and RBM-BSM distance compared with Class BR2. No significant differences were found between classes in the year before fiberoptic bronchoscopy. By contrast, Class BR1 was associated with a shorter time to first exacerbation and an increased risk of both frequent (3 or more) and severe exacerbations during the year after bronchoscopy in the two cohorts. Conclusions: Assessing bronchial remodeling identified severe preschool wheezers at risk of frequent and severe subsequent exacerbations with a favorable benefit to risk ratio.


Assuntos
Asma , Criança , Pré-Escolar , Humanos , Estudos Transversais , Análise de Classes Latentes , Estudos Prospectivos , Brônquios
3.
J Allergy Clin Immunol ; 150(1): 104-113, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35143808

RESUMO

BACKGROUND: Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE: We hypothesized that RV infection of BE specifically increases BSM-cell migration from patients with asthma. METHODS: Serum samples, biopsies, or BSM cells were obtained from 86 patients with severe asthma and 31 subjects without asthma. BE cells from subjects without asthma were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting, and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS: BSM cells from patients with severe asthma specifically migrated toward RV-infected BE, whereas those from subjects without asthma did not. This specific migration is driven by BE C-X-C motif chemokine ligand 10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in BSM cells from those with severe asthma. CONCLUSIONS: We have demonstrated a novel mechanism of BSM remodeling in patients with severe asthma following RV exacerbation. This study highlights the C-X-C motif chemokine ligand 10/CXCR3-A axis as a potential therapeutic target in severe asthma.


Assuntos
Asma , Infecções por Enterovirus , Asma/tratamento farmacológico , Movimento Celular , Infecções por Enterovirus/metabolismo , Epitélio/patologia , Humanos , Ligantes , Miócitos de Músculo Liso/metabolismo , Rhinovirus
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047427

RESUMO

Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Humanos , Atrofia Muscular/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Músculo Esquelético/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo
5.
J Allergy Clin Immunol ; 148(2): 645-651.e11, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33819511

RESUMO

BACKGROUND: Bronchial remodeling is a key feature of asthma that is already present in preschoolers with wheezing. Moreover, bronchial smooth muscle (BSM) remodeling at preschool age is predictive of asthma at school age. However, the mechanism responsible for BSM remodeling in preschoolers with wheezing remains totally unknown. In contrast, in adult asthma, BSM remodeling has been associated with an increase in BSM cell proliferation related to increased mitochondrial mass and biogenesis triggered by an altered calcium homeostasis. Indeed, BSM cell proliferation was decreased in vitro by the calcium channel blocker gallopamil. OBJECTIVE: Our aim was to investigate the mechanisms involved in BSM cell proliferation in preschoolers with severe wheezing, with special attention to the role of mitochondria and calcium signaling. METHODS: Bronchial tissue samples obtained from 12 preschool controls without wheezing and 10 preschoolers with severe wheezing were used to measure BSM mass and establish primary BSM cell cultures. BSM cell proliferation was assessed by manual counting and flow cytometry, ATP content was assessed by bioluminescence, mitochondrial respiration was assessed by using either the Seahorse or Oroboros technique, mitochondrial mass and biogenesis were assessed by immunoblotting, and calcium response to carbachol was assessed by confocal microscopy. The effect of gallopamil was also evaluated. RESULTS: BSM mass, cell proliferation, ATP content, mitochondrial respiration, mass and biogenesis, and calcium response were all increased in preschoolers with severe wheezing compared with in the controls. Gallopamil significantly decreased BSM mitochondrial biogenesis and mass, as well as cell proliferation. CONCLUSION: Mitochondria are key players in BSM cell proliferation in preschoolers with severe wheezing and could represent a potential target to treat BSM remodeling at an early stage of the disease.


Assuntos
Remodelação das Vias Aéreas/imunologia , Brônquios/imunologia , Mitocôndrias Musculares/imunologia , Músculo Liso/imunologia , Sons Respiratórios/imunologia , Asma/etiologia , Asma/imunologia , Asma/patologia , Brônquios/patologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Células Cultivadas , Pré-Escolar , Feminino , Galopamil/farmacologia , Humanos , Lactente , Masculino , Mitocôndrias Musculares/patologia , Músculo Liso/patologia
6.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33833033

RESUMO

BACKGROUND: Bronchial smooth muscle (BSM) remodelling in asthma is related to an increased mitochondrial biogenesis and enhanced BSM cell proliferation in asthma. Since mitochondria produce the highest levels of cellular energy and fatty acid ß-oxidation is the most powerful way to produce ATP, we hypothesised that, in asthmatic BSM cells, energetic metabolism is shifted towards the ß-oxidation of fatty acids. OBJECTIVES: We aimed to characterise BSM cell metabolism in asthma both in vitro and ex vivo to identify a novel target for reducing BSM cell proliferation. METHODS: 21 asthmatic and 31 non-asthmatic patients were enrolled. We used metabolomic and proteomic approaches to study BSM cells. Oxidative stress, ATP synthesis, fatty acid endocytosis, metabolite production, metabolic capabilities, mitochondrial networks, cell proliferation and apoptosis were assessed on BSM cells. Fatty acid content was assessed in vivo using matrix-assisted laser desorption/ionisation spectrometry imaging. RESULTS: Asthmatic BSM cells were characterised by an increased rate of mitochondrial respiration with a stimulated ATP production and mitochondrial ß-oxidation. Fatty acid consumption was increased in asthmatic BSM both in vitro and ex vivo. Proteome remodelling of asthmatic BSM occurred via two canonical mitochondrial pathways. The levels of carnitine palmitoyl transferase (CPT)2 and low-density lipoprotein (LDL) receptor, which internalise fatty acids through mitochondrial and cell membranes, respectively, were both increased in asthmatic BSM cells. Blocking CPT2 or LDL receptor drastically and specifically reduced asthmatic BSM cell proliferation. CONCLUSION: This study demonstrates a metabolic switch towards mitochondrial ß-oxidation in asthmatic BSM and identifies fatty acid metabolism as a new key target to reduce BSM remodelling in asthma.


Assuntos
Asma , Proteômica , Asma/metabolismo , Brônquios , Ácidos Graxos/metabolismo , Humanos , Músculo Liso , Oxirredução
8.
Biomed Pharmacother ; 174: 116552, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599061

RESUMO

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Assuntos
Conexina 43 , Miócitos de Músculo Liso , Fator de Crescimento Neural , Artéria Pulmonar , Animais , Humanos , Masculino , Ratos , Células Cultivadas , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Fosforilação , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor trkA/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 14(2): 745-757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811134

RESUMO

Skeletal muscle wasting, whether related to physiological ageing, muscle disuse or to an underlying chronic disease, is a key determinant to quality of life and mortality. However, cellular basis responsible for increased catabolism in myocytes often remains unclear. Although myocytes represent the vast majority of skeletal muscle cellular population, they are surrounded by numerous cells with various functions. Animal models, mostly rodents, can help to decipher the mechanisms behind this highly dynamic process, by allowing access to every muscle as well as time-course studies. Satellite cells (SCs) play a crucial role in muscle regeneration, within a niche also composed of fibroblasts and vascular and immune cells. Their proliferation and differentiation is altered in several models of muscle wasting such as cancer, chronic kidney disease or chronic obstructive pulmonary disease (COPD). Fibro-adipogenic progenitor cells are also responsible for functional muscle growth and repair and are associated in disease to muscle fibrosis such as in chronic kidney disease. Other cells have recently proven to have direct myogenic potential, such as pericytes. Outside their role in angiogenesis, endothelial cells and pericytes also participate to healthy muscle homoeostasis by promoting SC pool maintenance (so-called myogenesis-angiogenesis coupling). Their role in chronic diseases muscle wasting has been less studied. Immune cells are pivotal for muscle repair after injury: Macrophages undergo a transition from the M1 to the M2 state along with the transition between the inflammatory and resolutive phase of muscle repair. T regulatory lymphocytes promote and regulate this transition and are also able to activate SC proliferation and differentiation. Neural cells such as terminal Schwann cells, motor neurons and kranocytes are notably implicated in age-related sarcopenia. Last, newly identified cells in skeletal muscle, such as telocytes or interstitial tenocytes could play a role in tissular homoeostasis. We also put a special focus on cellular alterations occurring in COPD, a chronic and highly prevalent respiratory disease mainly linked to tobacco smoke exposure, where muscle wasting is strongly associated with increased mortality, and discuss the pros and cons of animal models versus human studies in this context. Finally, we discuss resident cells metabolism and present future promising leads for research, including the use of muscle organoids.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Regeneração , Animais , Humanos , Regeneração/fisiologia , Células Endoteliais , Qualidade de Vida , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Caquexia/patologia , Modelos Animais , Doença Pulmonar Obstrutiva Crônica/patologia
10.
Elife ; 122023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494277

RESUMO

Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.


Assuntos
Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica , Humanos , Brônquios/patologia , Células Epiteliais/patologia , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA