Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Assay Drug Dev Technol ; 6(3): 339-49, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18593375

RESUMO

Guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assays were established and utilized as a reliable and high-capacity functional assay for determining antagonist and inverse agonist pharmacological parameters of novel histamine H(3) ligands, at the recombinant human H(3) receptor. [(35)S]GTPgammaS binding assays were performed with membranes prepared from human embryonic kidney 293 cells stably expressing the full-length (445 amino acids) human H(3) receptor isoform, at approximately 1 pmol/mg of protein. Utilizing robotic liquid handling, assay filtration, and scintillation counting in a 96-well format, concentration-response curves were determined for up to 40 compounds per assay. The imidazole-containing H(3) receptor antagonist ciproxifan and the non-imidazole antagonist ABT-239 inhibited (R)-alpha-methylhistamine (RAMH)-stimulated [(35)S]GTPgammaS binding in a competitive manner, and negative logarithm of the dissociation equilibrium constant (pK(b)) values determined for nearly 200 structurally diverse H(3) antagonists were very similar to the respective negative logarithm of the equilibrium inhibition constant values from N-alpha-[(3)H]methylhistamine competition binding assays. H(3) antagonists also concentration-dependently decreased basal [(35)S]GTPgammaS binding, thereby displaying inverse agonism at the constitutively active H(3) receptor. At maximally effective concentrations, non-imidazole H(3) antagonists inhibited basal [(35)S]GTPgammaS binding by approximately 20%. For over 100 of these antagonists, negative logarithm of the 50% effective concentration values for inverse agonism were very similar to the respective pK(b) values. Both H(3) receptor agonist-dependent and -independent (constitutive) [(35)S]GTPgammaS binding were sensitive to changes in assay concentrations of sodium, magnesium, and the guanine nucleotide GDP; however, the potency of ABT-239 for inhibition of RAMH-stimulated [(35)S]GTPgammaS binding was not significantly affected. These robust and reliable [(35)S]GTPgammaS binding assays have become one of the important tools in our pharmacological analysis and development of novel histamine H(3) receptor antagonists/inverse agonists.


Assuntos
Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Receptores Histamínicos H3/efeitos dos fármacos , Radioisótopos de Enxofre , Benzofuranos/farmacologia , Linhagem Celular , Agonismo Inverso de Drogas , Humanos , Ligantes , Metilistaminas/farmacologia , Pirrolidinas/farmacologia
2.
J Pharmacol Exp Ther ; 323(3): 888-98, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17855474

RESUMO

In this article, we pharmacologically characterized two naturally occurring human histamine H3 receptor (hH3R) isoforms, hH3R(445) and hH3R(365). These abundantly expressed splice variants differ by a deletion of 80 amino acids in the intracellular loop 3. In this report, we show that the hH3R(365) is differentially expressed compared with the hH3R(445) and has a higher affinity and potency for H3R agonists and conversely a lower potency and affinity for H3R inverse agonists. Furthermore, we show a higher constitutive signaling of the hH3R(365) compared with the hH3R(445) in both guanosine-5'-O-(3-[35S]thio) triphosphate binding and cAMP assays, likely explaining the observed differences in hH3R pharmacology of the two isoforms. Because H3R ligands are beneficial in animal models of obesity, epilepsy, and cognitive diseases such as Alzheimer's disease and attention deficit hyperactivity disorder and currently entered clinical trails, these differences in H3R pharmacology of these two isoforms are of great importance for a detailed understanding of the action of H3R ligands.


Assuntos
Processamento Alternativo , Aminoácidos , Receptores Histamínicos H3 , Deleção de Sequência , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Ligação Competitiva , Encéfalo/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Clonagem Molecular , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ligantes , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas , Ensaio Radioligante , Ratos , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA