RESUMO
We report here an instructive case referred at 16 months-old for exploration of hemolysis without anemia (compensated anemia with reticulocytosis). The biology tests confirmed the hemolysis with increased total and indirect bilirubin. The usual hemolysis diagnosis tests were normal (DAT, G6PD, PK, Hb electrophoresis) except cytology and ektacytometry suggesting an association of multiple red blood cell (RBC) membrane disorders. This led us to propose a molecular screening analysis using targeted-Next Generation Sequencing (t-NGS) with a capture technique on 93 genes involved in RBC and erythropoiesis defects. We identified 4 missense heterozygous allelic variations, all of them were described without any significance (VUS) in the SLC4A1, RhAG, PIEZO1 and SPTB genes. The study of the familial cosegregation and research functional tests allowed to decipher the role of at least two by two genes in the phenotype and the hemolytic disease of this young patient. Specialized t-NGS panel (or virtual exome/genome sequencing) in a disease-referent laboratory and the motivated collaboration of clinicians, biologists and scientists should be the gold standard for improving the diagnosis of the patients affected with RBC diseases or rare inherited anemias.
Assuntos
Doenças Hematológicas , Esferocitose Hereditária , Humanos , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Espectrina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hemólise , Mutação , Eritrócitos , Fenótipo , Proteína 1 de Troca de Ânion do Eritrócito/genética , Canais Iônicos/genéticaRESUMO
BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).
Assuntos
Antígenos de Grupos Sanguíneos , Gravidez , Feminino , Humanos , Células HEK293 , Prevalência , Antígenos de Grupos Sanguíneos/genética , Isoanticorpos , Estrutura MolecularRESUMO
Zika virus (ZIKV) from Uganda (UG) expresses a phenotype related to fetal loss, whereas the variant from Brazil (BR) induces microcephaly in neonates. The differential virulence has a direct relation to biomolecular mechanisms that make one strain more aggressive than the other. The nonstructural protein 1 (NS1) is a key viral toxin to comprehend these viral discrepancies because of its versatility in many processes of the virus life cycle. Here, we aim to examine through coarse-grained models and molecular dynamics simulations the protein-membrane interactions for both NS1ZIKV-UG and NS1ZIKV-BR dimers. A first evaluation allowed us to establish that the NS1 proteins, in the membrane presence, explore new conformational spaces when compared to systems simulated without a lipid bilayer. These events derive from both differential coupling patterns and discrepant binding affinities to the membrane. The N-terminal domain, intertwined loop, and greasy finger proposed previously as binding membrane regions were also computationally confirmed by us. The anchoring sites have aromatic and ionizable residues that manage the assembly of NS1 toward the membrane, especially for the Ugandan variant. Furthermore, in the presence of the membrane, the difference in the dynamic cross-correlation of residues between the two strains is particularly pronounced in the putative epitope regions. This suggests that the protein-membrane interaction induces changes in the distal part related to putative epitopes. Taken together, these results open up new strategies for the treatment of flaviviruses that would specifically target these dynamic differences.
Assuntos
Infecção por Zika virus , Zika virus , Humanos , Virulência/genética , Proteínas não Estruturais Virais/química , Anticorpos Antivirais , EpitoposRESUMO
Conformational flexibility plays an essential role in antibodies' functional and structural stability. They facilitate and determine the strength of antigen-antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.
Assuntos
Camelidae , Região Variável de Imunoglobulina , Animais , Região Variável de Imunoglobulina/química , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Simulação de Dinâmica MolecularRESUMO
VHH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies. The number of experimentally solved VHH structures has significantly improved recently, which is of great help, because it offers the ability to directly work on 3D structures to humanise or improve them. Unfortunately, most VHHs do not have 3D structures. Thus, it is essential to find alternative ways to get structural information. The methods of structure prediction from the primary amino acid sequence appear essential to bypass this limitation. This review presents the most extensive overview of structure prediction methods applied for the 3D modelling of a given VHH sequence (a total of 21). Besides the historical overview, it aims at showing how model software programs have been shaping the structural predictions of VHHs. A brief explanation of each methodology is supplied, and pertinent examples of their usage are provided. Finally, we present a structure prediction case study of a recently solved VHH structure. According to some recent studies and the present analysis, AlphaFold 2 and NanoNet appear to be the best tools to predict a structural model of VHH from its sequence.
Assuntos
Camelídeos Americanos , Cadeias Pesadas de Imunoglobulinas , Sequência de Aminoácidos , Animais , Anticorpos , Cadeias Pesadas de Imunoglobulinas/química , Modelos EstruturaisRESUMO
Viruses can impact and affect human populations in a severe way. The appropriate differentiation among several species or strains of viruses is one of the biggest challenges for virology and infectiology studies. The detection of measurables-quantified discrepancies allows for more accurate clinical diagnoses and treatments for viral diseases. In the present study, we have used a computational approach to explore the dynamical properties of the nonstructural protein 1 from two strains of Zika virus. Our results show that despite a high sequence similarity, the two viral proteins from different origins can exhibit significant dissimilar structural dynamics, which complement their reported differential virulence. The present study opens up new ways in the understanding of the infectivity for these biological entities.
Assuntos
Infecção por Zika virus , Zika virus , Humanos , Proteínas não Estruturais Virais , VirulênciaRESUMO
The interactions between viruses and actin cytoskeleton have been widely studied. We showed that rotaviruses remodel microfilaments in intestinal cells and demonstrated that this was due to the VP4 spike protein. Microfilaments mainly occur in the apical domain of infected polarized enterocytes and favor the polarized apical exit of viral progeny. The present work aims at the identification of molecular determinants of actin-VP4 interactions. We used various deletion mutants of VP4 that were transfected into Cos-7 cells and analyzed interactions by immunofluorescence confocal microscopy. It has been established that the C-terminal part of VP4 is embedded within viral particles when rotavirus assembles. The use of specific monoclonal antibodies demonstrated that VP4 is expressed in different forms in infected cells: classically as spike on the outer layer of virus particles, but also as free soluble protein in the cytosol. The C terminus of free VP4 was identified as interacting with actin microfilaments. The VP4 actin binding domain is unable to promote microfilament remodeling by itself; the coiled-coil domain is also required in this process. This actin-binding domain was shown to dominate a previously identified peroxisomal targeting signal, located in the three last amino acids of VP4. The newly identified actin-binding domain is highly conserved in rotavirus strains from species A, B, and C, suggesting that actin binding and remodeling is a general strategy for rotavirus exit. This provides a novel mechanism of protein-protein interactions, not involving cell signaling pathways, to facilitate rotavirus exit.IMPORTANCE Rotaviruses are causal agents of acute infantile viral diarrhea. In intestinal cells, in vitro as well as in vivo, virus assembly and exit do not imply cell lysis but rely on an active process in which the cytoskeleton plays a major role. We describe here a novel molecular mechanism by which the rotavirus spike protein VP4 drives actin remodeling. This relies on the fact that VP4 occurs in different forms. Besides its structural function within the virion, a large proportion of VP4 is expressed as free protein. Here, we show that free VP4 possesses a functional actin-binding domain. This domain, in coordination with a coiled-coil domain, promotes actin cytoskeleton remodeling, thereby providing the capacity to destabilize the cell membrane and allow efficient rotavirus exit.
Assuntos
Actinas/química , Actinas/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Rotavirus/metabolismo , Animais , Sítios de Ligação , Células COS , Proteínas do Capsídeo/genética , Linhagem Celular , Chlorocebus aethiops , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Ligação Proteica , Domínios Proteicos , Rotavirus/química , Rotavirus/genéticaRESUMO
Viruses are enthusiastically studied due to the great impact that these organisms can have on human health. Computational approaches can contribute offering tools that can shed light on important molecular mechanisms that help to design new diagnostic procedures. Several cellular processes between the immune-host system and the pathogenic organism are dependent on specific intermolecular interactions. In this study, we evaluated theoretical approaches to understand some properties of the antigen-antibody interactions considering the titratable properties of all ionizable residues of the nonstructural viral protein 1 (NS1) of the West Nile virus (WNV) and the Zika virus (ZIKV). Constant-pH Monte Carlo simulations were performed to estimate electrostatic properties such as the pKa shifts (ΔpKa). We proposed an alternative criterion for the discrimination of antigenic residues based on ΔpKas. Our outcomes were analyzed by an evaluation of the sensitivity and specificity through a receiver operating characteristic (ROC). As a starting point, we used the known crystallographic structure for the complex of NS1WNV(176-352) and the specific antibody 22NS1 (PDB ID 4OII ) to differentiate the residues belonging to that interface. With an optimal threshold for the absolute value of the pKa shifts, we found that is possible to predict antigenic epitopes reproducing the interfaces as defined by the X-ray structure. After this validation, we evaluated theoretical predictions based on protein-protein (PP) complexation simulations. From them, we observe amino acids with an antigenic potential and defined the optimum threshold that was applied for two strains of ZIKV (i.e., Uganda and Brazil). Several ionizable residues with antigenic capacity were identified. This is favorably related to some studies that show the high immunogenicity of secreted NS1. This approach opens up an important discussion about what are termed here "electrostatic epitopes" and how they work as an important reference in the paratope-epitope interaction for viral systems.
Assuntos
Epitopos/química , Epitopos/imunologia , Flavivirus/imunologia , Modelos Moleculares , Eletricidade Estática , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Método de Monte Carlo , Conformação ProteicaRESUMO
Translocator protein (TSPO), a mitochondrial membrane protein, has been extensively studied, and its role is still debated and continues to be enigmatic. From a structural perspective, despite availability of atomic structures from different species, the possible oligomeric state and its 3D structure remains elusive. In the present study, we attempted to study dynamics of TSPO from the perspective of oligomerization. In this aim, we examined if and how TSPO monomers could assemble to form a dimer. Accordingly, we performed several coarse-grained molecular dynamics simulations considering two different initial configurations, one with a pair of TSPO monomers distantly placed in a model of a bilayer composed of DMPC/cholesterol mixture and the other with preformed dimer models with different starting interactions. We identify stable TSPO dimers with diverse interfaces, some of which were consistent with earlier experimental observations on putative TSPO oligomer interfaces. For most of the stable ones, interactions between aromatic residues were significantly overrepresented in diverse oligomeric organizations. Interestingly, we identified different communication pathways that involve dimer interfaces. Additionally, we observed that cholesterol molecules in close interaction with the TSPO dimer were able to translocate through the bilayer. This phenomenon might be related to the putative mechanism of cholesterol transport and could be increased and favored by the dimer formation. Overall, our observations shed new light on TSPO oligomerization and bring new perspectives on its dynamics, as well its interactions with protein and ligand partners.
Assuntos
Simulação de Dinâmica Molecular , Receptores de GABA , Proteínas de Transporte , Colesterol , Dimerização , Receptores de GABA/metabolismoRESUMO
Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.
Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Serotonina/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Membrana Celular/química , Eritrócitos/química , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peroxidação de Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Oxirredução , Serotonina/administração & dosagem , Serotonina/químicaRESUMO
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.
Assuntos
Dissulfetos/química , Glicogênio Fosforilase Encefálica/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Regulação Alostérica/fisiologia , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Glicogênio/química , Glicogênio/metabolismo , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Fosforilação/fisiologia , Coelhos , RatosRESUMO
Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen.
Assuntos
Monofosfato de Adenosina/química , Glicogênio Fosforilase Encefálica/química , Proteínas do Tecido Nervoso/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Domínios ProteicosRESUMO
The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications.
Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Modelos Moleculares , Rhodobacter sphaeroides/química , Sequência de Aminoácidos , Sítios de Ligação , Colesterol/química , Sequência Conservada , Microscopia Crioeletrônica , Cristalização , Isoquinolinas/química , Ligantes , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Protoporfirinas/química , Alinhamento de SequênciaRESUMO
Transmembrane proteins (TMPs) are major drug targets, but the knowledge of their precise topology structure remains highly limited compared with globular proteins. In spite of the difficulties in obtaining their structures, an important effort has been made these last years to increase their number from an experimental and computational point of view. In view of this emerging challenge, the development of computational methods to extract knowledge from these data is crucial for the better understanding of their functions and in improving the quality of structural models. Here, we revisit an efficient unsupervised learning procedure, called Hybrid Protein Model (HPM), which is applied to the analysis of transmembrane proteins belonging to the all-α structural class. HPM method is an original classification procedure that efficiently combines sequence and structure learning. The procedure was initially applied to the analysis of globular proteins. In the present case, HPM classifies a set of overlapping protein fragments, extracted from a non-redundant databank of TMP 3D structure. After fine-tuning of the learning parameters, the optimal classification results in 65 clusters. They represent at best similar relationships between sequence and local structure properties of TMPs. Interestingly, HPM distinguishes among the resulting clusters two helical regions with distinct hydrophobic patterns. This underlines the complexity of the topology of these proteins. The HPM classification enlightens unusual relationship between amino acids in TMP fragments, which can be useful to elaborate new amino acids substitution matrices. Finally, two challenging applications are described: the first one aims at annotating protein functions (channel or not), the second one intends to assess the quality of the structures (X-ray or models) via a new scoring function deduced from the HPM classification.
Assuntos
Sequência de Aminoácidos , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Modelos Moleculares , Animais , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
The anion exchanger 1 (AE1), a member of bicarbonate transporter family SLC4, mediates an electroneutral chloride/bicarbonate exchange in physiological conditions. However, some point mutations in AE1 membrane-spanning domain convert the electroneutral anion exchanger into a Na(+) and K(+) conductance or induce a cation leak in a still functional anion exchanger. The molecular determinants that govern ion movement through this transporter are still unknown. The present study was intended to identify the ion translocation pathway within AE1. In the absence of a resolutive three-dimensional structure of AE1 membrane-spanning domain, in silico modeling combined with site-directed mutagenesis experiments was done. A structural model of AE1 membrane-spanning domain is proposed, and this model is based on the structure of a uracil-proton symporter. This model was used to design cysteine-scanning mutagenesis on transmembrane (TM) segments 3 and 5. By measuring AE1 anion exchange activity or cation leak, it is proposed that there is a unique transport site comprising TM3-5 and TM8 that should function as an anion exchanger and a cation leak.
Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Sequência de Aminoácidos , Animais , Ânions/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Feminino , Humanos , Lítio/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos , Mutação Puntual , Potássio/química , Estrutura Terciária de Proteína , Sódio/química , Compostos de Sulfidrila/química , Xenopus laevisRESUMO
Prolyl oligopeptidase (POP) is a serine protease, unique for its ability to cleave various small oligopeptides shorter than 30 amino acids. POP is an important drug target since it is implicated in various neurological disorders. Although there is structural evidence that bacterial POPs undergo huge interdomain movements and acquire an "open" state in the substrate-unbound form, hitherto, no crystal structure is available in the substrate-unbound domain-open form of eukaryotic POPs. Indeed, there is no difference between the substrate-unbound/bound states of eukaryotic POPs. This raises unanswered questions about whether difference in the substrate access pathway exists between bacterial and eukaryotic POPs. Here, we have used normal mode analysis and molecular dynamics to unravel the mechanism of substrate entry in mammalian POPs, which has been debated until now. Motions observed using normal modes of porcine and bacterial POPs were analyzed and compared, augmented by molecular dynamics of these proteins. Identical to bacterial POPs, interdomain opening was found to be the possible pathway for the substrate-gating in mammals as well. On the basis of our analyses and evidences, a mechanistic model of substrate entry in POPs has been proposed. Up-down movement of N-terminal hydrolase domain resulted in twisting motion of two domains, followed by the conformational changes of interdomain loop regions, which facilitate interdomain opening. Similar to bacterial POPs, an open form of porcine POP is also proposed with domain-closing motion. This work has direct implications for the development of novel inhibitors of mammalian POPs to understand the etiology of various neurological diseases.
Assuntos
Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Animais , Domínio Catalítico , Prolil Oligopeptidases , Especificidade por Substrato , SuínosRESUMO
Protein structures are necessary for understanding protein function at a molecular level. Dynamics and flexibility of protein structures are also key elements of protein function. So, we have proposed to look at protein flexibility using novel methods: (i) using a structural alphabet and (ii) combining classical X-ray B-factor data and molecular dynamics simulations. First, we established a library composed of structural prototypes (LSPs) to describe protein structure by a limited set of recurring local structures. We developed a prediction method that proposes structural candidates in terms of LSPs and predict protein flexibility along a given sequence. Second, we examine flexibility according to two different descriptors: X-ray B-factors considered as good indicators of flexibility and the root mean square fluctuations, based on molecular dynamics simulations. We then define three flexibility classes and propose a method based on the LSP prediction method for predicting flexibility along the sequence. This method does not resort to sophisticate learning of flexibility but predicts flexibility from average flexibility of predicted local structures. The method is implemented in PredyFlexy web server. Results are similar to those obtained with the most recent, cutting-edge methods based on direct learning of flexibility data conducted with sophisticated algorithms. PredyFlexy can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/.
Assuntos
Conformação Proteica , Software , Cristalografia por Raios X , Internet , Simulação de Dinâmica Molecular , Movimento (Física) , Análise de Sequência de ProteínaRESUMO
Translocator protein (TSPO) is an 18 kDa transmembrane protein, localized primarily on the outer mitochondrial membrane. It has been found to be involved in various physiological processes and pathophysiological conditions. Though studies on its structure have been performed only recently, there is little information on the nature of dynamics and doubts about some structures referenced in the literature, especially the NMR structure of mouse TSPO. In the present work, we thoroughly study the dynamics of mouse TSPO protein by means of atomistic molecular dynamics simulations, in presence as well as in absence of the diagnostic ligand PKA. We considered two starting structures: the NMR structure and a homology model (HM) generated on the basis of X-ray structures from bacterial TSPO. We examine the conformational landscape in both the modes for both starting points, in presence and absence of the ligand, in order to measure its impact for both structures. The analysis highlights high flexibility of the protein globally, but NMR simulations show a surprisingly flexibility even in the presence of the ligand. Interestingly, this is not the case for HM calculations, to the point that the ligand seems not so stable as in the NMR system and an unbinding event process is partially sampled. All those results tend to show that the NMR structure of mTSPO seems not deficient but is just in another portion of the global conformation space of TSPO.
Assuntos
Isoquinolinas , Receptores de GABA , Animais , Camundongos , Sítios de Ligação , Isoquinolinas/química , Isoquinolinas/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de GABA/metabolismo , Receptores de GABA/químicaRESUMO
Sensing membrane curvature allows fine-tuning of complex reactions that occur at the surface of membrane-bound organelles. One of the most sensitive membrane curvature sensors, the Amphipathic Lipid Packing Sensor (ALPS) motif, does not seem to recognize the curved surface geometry of membranes per se; rather, it recognizes defects in lipid packing that arise from membrane bending. In a companion paper, we show that these defects can be mimicked by introducing conical lipids in a flat lipid bilayer, in agreement with experimental observations. Here, we use molecular-dynamics (MD) simulations to characterize ALPS binding to such lipid bilayers. The ALPS motif recognizes lipid-packing defects by a conserved mechanism: peptide partitioning is driven by the insertion of hydrophobic residues into large packing defects that are preformed in the bilayer. This insertion induces only minor modifications in the statistical distribution of the free packing defects. ALPS insertion is severely hampered when monounsaturated lipids are replaced by saturated lipids, leading to a decrease in packing defects. We propose that the hypersensitivity of ALPS motifs to lipid packing defects results from the repetitive use of hydrophobic insertions along the monotonous ALPS sequence.
Assuntos
Proteínas Ativadoras de GTPase/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Ativadoras de GTPase/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
In biological membranes, changes in lipid composition or mechanical deformations produce defects in the geometrical arrangement of lipids, thus allowing the adsorption of certain peripheral proteins. Here, we perform molecular dynamics simulations on bilayers containing a cylindrical lipid (PC) and a conical lipid (DOG). Profiles of atomic density and lateral pressure across the bilayer show differences in the acyl chain region due to deeper partitioning of DOG compared to PC. However, such analyses are less informative for the interfacial region where peripheral proteins adsorb. To circumvent this limitation, we develop, to our knowledge, a new method of membrane surface analysis. This method allows the identification of chemical defects, where hydrocarbon chains are accessible to the solvent, and geometrical defects, i.e., voids deeper than the glycerol backbone. The size and number of both types of defects increase with the number of monounsaturated acyl chains in PC and with the introduction of DOG, although the defects do not colocalize with the conical lipid. Interestingly, the size and probability of the defects promoted by DOG resemble those induced by positive curvature, thus explaining why conical lipids and positive curvature can both drive the adsorption of peripheral proteins that use hydrophobic residues as membrane anchors.