Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687811

RESUMO

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Assuntos
Doença de Alzheimer , Encéfalo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Transcriptoma/genética , Proteômica/métodos , Masculino , Biomarcadores/metabolismo , Metabolômica/métodos , Aprendizado de Máquina , Feminino , Progressão da Doença , Idoso , Modelos Animais de Doenças , Multiômica
2.
Mol Psychiatry ; 28(11): 4889-4901, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37730840

RESUMO

Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.


Assuntos
Doença de Alzheimer , RNA Longo não Codificante , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , Grânulos de Estresse , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
3.
Alzheimers Dement ; 19(5): 1785-1799, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36251323

RESUMO

INTRODUCTION: The identification of multiple genetic risk factors for Alzheimer's disease (AD) suggests that many pathways contribute to AD onset and progression. However, the metabolomic and lipidomic profiles in carriers of distinct genetic risk factors are not fully understood. The metabolome can provide a direct image of dysregulated pathways in the brain. METHODS: We interrogated metabolomic signatures in the AD brain, including carriers of pathogenic variants in APP, PSEN1, and PSEN2 (autosomal dominant AD; ADAD), APOE ɛ4, and TREM2 risk variant carriers, and sporadic AD (sAD). RESULTS: We identified 133 unique and shared metabolites associated with ADAD, TREM2, and sAD. We identified a signature of 16 metabolites significantly altered between groups and associated with AD duration. DISCUSSION: AD genetic variants show distinct metabolic perturbations. Investigation of these metabolites may provide greater insight into the etiology of AD and its impact on clinical presentation. HIGHLIGHTS: APP/PSEN1/PSEN2 and TREM2 variant carriers show distinct metabolic changes. A total of 133 metabolites were differentially abundant in AD genetic groups. ß-citrylglutamate is differentially abundant in autosomal dominant, TREM2, and sporadic AD. A 16-metabolite profile shows differences between Alzheimer's disease (AD) genetic groups. The identified metabolic profile is associated with duration of disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patologia , Heterozigoto , Lipidômica , Mutação , Presenilina-1/genética
5.
Front Mol Biosci ; 10: 1051494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845551

RESUMO

Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.

6.
Front Aging Neurosci ; 14: 935279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238934

RESUMO

Objectives: Neuroinflammation signaling has been identified as an important hallmark of Alzheimer's disease (AD) in addition to amyloid ß plaques (Aß) and neurofibrillary tangles (NFTs). However, the molecular mechanisms and biological processes of neuroinflammation remain unclear and have not well delineated using transcriptomics data available. Our objectives are to uncover the core neuroinflammation signaling pathways in AD using integrative network analysis on the transcriptomics data. Materials and methods: From a novel perspective, i.e., investigating weakly activated molecular signals (rather than the strongly activated molecular signals), we developed integrative and systems biology network analysis to uncover potential core neuroinflammation signaling targets and pathways in AD using the two large-scale transcriptomics datasets, i.e., Mayo Clinic (77 controls and 81 AD samples) and ROSMAP (97 controls and 260 AD samples). Results: Our analysis identified interesting core neuroinflammation signaling pathways, which are not systematically reported in the previous studies of AD. Specifically, we identified 7 categories of signaling pathways implicated on AD and related to virus infection: immune response, x-core signaling, apoptosis, lipid dysfunctional, biosynthesis and metabolism, and mineral absorption signaling pathways. More interestingly, most of the genes in the virus infection, immune response, and x-core signaling pathways are associated with inflammation molecular functions. The x-core signaling pathways were defined as a group of 9 signaling proteins: MAPK, Rap1, NF-kappa B, HIF-1, PI3K-Akt, Wnt, TGF-beta, Hippo, and TNF, which indicated the core neuroinflammation signaling pathways responding to the low-level and weakly activated inflammation and hypoxia and leading to the chronic neurodegeneration. It is interesting to investigate the detailed signaling cascades of these weakly activated neuroinflammation signaling pathways causing neurodegeneration in a chronic process, and consequently uncover novel therapeutic targets for effective AD treatment and prevention. Conclusions: The potential core neuroinflammation and associated signaling targets and pathways were identified using integrative network analysis on two large-scale transcriptomics datasets of AD.

7.
Noncoding RNA ; 8(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35076605

RESUMO

Existing small noncoding RNA analysis tools are optimized for processing short sequencing reads (17-35 nucleotides) to monitor microRNA expression. However, these strategies under-represent many biologically relevant classes of small noncoding RNAs in the 36-200 nucleotides length range (tRNAs, snoRNAs, etc.). To address this, we developed DANSR, a tool for the detection of annotated and novel small RNAs using sequencing reads with variable lengths (ranging from 17-200 nt). While DANSR is broadly applicable to any small RNA dataset, we applied it to a cohort of matched normal, primary, and distant metastatic colorectal cancer specimens to demonstrate its ability to quantify annotated small RNAs, discover novel genes, and calculate differential expression. DANSR is available as an open source tool.

8.
NPJ Breast Cancer ; 8(1): 49, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418131

RESUMO

Late-stage relapse (LSR) in patients with breast cancer (BC) occurs more than five years and up to 10 years after initial treatment and has less than 30% 5-year relative survival rate. Long non-coding RNAs (lncRNAs) play important roles in BC yet have not been studied in LSR BC. Here, we identify 1127 lncRNAs differentially expressed in LSR BC via transcriptome sequencing and analysis of 72 early-stage and 24 LSR BC patient tumors. Decreasing expression of the most up-regulated lncRNA, LINC00355, in BC and MCF7 long-term estrogen deprived cell lines decreases cellular invasion and proliferation. Subsequent mechanistic studies show that LINC00355 binds to MENIN and changes occupancy at the CDKN1B promoter to decrease p27Kip. In summary, this is a key study discovering lncRNAs in LSR BC and LINC00355 association with epigenetic regulation and proliferation in BC.

9.
Sci Rep ; 10(1): 15890, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985524

RESUMO

Whole genome sequencing (WGS) has enabled the discovery of genomic structural variants (SVs), including those targeting intergenic and intronic non-coding regions that eluded previous exome focused strategies. However, the field currently lacks an automated tool that analyzes SV candidates to identify recurrent SVs and their targeted sites (hotspot regions), visualizes these genomic events within the context of various functional elements, and evaluates their potential effect on gene expression. To address this, we developed SV-HotSpot, an automated tool that integrates SV candidates, copy number alterations, gene expression, and genome annotations (e.g. gene and regulatory elements) to discover, annotate, and visualize recurrent SVs and their targeted hotspot regions that may affect gene expression. We applied SV-HotSpot to WGS and matched transcriptome data from metastatic castration resistant prostate cancer patients and rediscovered recurrent SVs targeting coding and non-coding functional elements known to promote prostate cancer progression and metastasis. SV-HotSpot provides a valuable resource to integrate SVs, gene expression, and genome annotations for discovering biologically relevant SVs altering coding and non-coding genome. SV-HotSpot is available at https://github.com/ChrisMaherLab/SV-HotSpot .


Assuntos
Variações do Número de Cópias de DNA , Variação Estrutural do Genoma , Neoplasias de Próstata Resistentes à Castração/genética , Transcriptoma , Genoma Humano , Humanos , Masculino , Sequenciamento Completo do Genoma
10.
JCI Insight ; 3(23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518683

RESUMO

Immune checkpoint blockade (ICB) provides clinical benefit to a minority of patients with urothelial carcinoma (UC). The role of CD4+ T cells in ICB-induced antitumor activity is not well defined; however, CD4+ T cells are speculated to play a supportive role in the development of CD8+ T cells that kill tumor cells after recognition of tumor antigens presented by MHC class I. To investigate the mechanisms of ICB-induced activity against UC, we developed mouse organoid-based transplantable models that have histologic and genetic similarity to human bladder cancer. We found that ICB can induce tumor rejection and protective immunity with these systems in a manner dependent on CD4+ T cells but not reliant on CD8+ T cells. Evaluation of tumor infiltrates and draining lymph nodes after ICB revealed expansion of IFN-γ-producing CD4+ T cells. Tumor cells in this system express MHC class I, MHC class II, and the IFN-γ receptor (Ifngr1), but none were necessary for ICB-induced tumor rejection. IFN-γ neutralization blocked ICB activity, and, in mice depleted of CD4+ T cells, IFN-γ ectopically expressed in the tumor microenvironment was sufficient to inhibit growth of tumors in which the epithelial compartment lacked Ifngr1. Our findings suggest unappreciated CD4+ T cell-dependent mechanisms of ICB activity, principally mediated through IFN-γ effects on the microenvironment.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Neoplasias/imunologia , Neoplasias da Bexiga Urinária/imunologia , Urotélio/imunologia , Animais , Anticorpos Bloqueadores/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunoterapia , Interferon gama/metabolismo , Linfonodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Neoplasias/terapia , Neoplasias Experimentais , Receptores de Interferon/metabolismo , Microambiente Tumoral/imunologia , Receptor de Interferon gama
11.
PLoS One ; 12(5): e0176185, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459823

RESUMO

Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (<70%) and a slightly higher actual FDR than our proposed methods. In addition, the results from an analysis based on the qualitative characteristics of sample distribution for MAQC2 and human breast cancer datasets show that only our gene-wise normalization methods corrected data skewed towards lower read counts. However, when we evaluated MAQC3 with less variation in five replicates, all methods performed similarly. Thus, our proposed Med-pgQ2 and UQ-pgQ2 methods perform slightly better for differential gene analysis of RNA-seq data skewed towards lowly expressed read counts with high variation by improving specificity while maintaining a good detection power with a control of the nominal FDR level.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Área Sob a Curva , Neoplasias da Mama/metabolismo , Simulação por Computador , Conjuntos de Dados como Assunto , Humanos , Análise em Microsséries/métodos , Modelos Estatísticos , Curva ROC , Software
12.
Eur Urol ; 71(2): 257-266, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27460352

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are an emerging class of relatively underexplored oncogenic molecules with biological and clinical significance. Current inadequacies for stratifying patients with aggressive disease presents a strong rationale to systematically identify lncRNAs as clinical predictors in localized prostate cancer. OBJECTIVE: To identify RNA biomarkers associated with aggressive prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: Radical prostatectomy microarray and clinical data was obtained from 910 patients in three published institutional cohorts: Mayo Clinic I (N=545, median follow-up 13.8 yr), Mayo Clinic II (N=235, median follow-up 6.7 yr), and Thomas Jefferson University (N=130, median follow-up 9.6 yr). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary clinical endpoint was distant metastasis-free survival. Secondary endpoints include prostate cancer-specific survival and overall survival. Univariate and multivariate Cox regression were used to evaluate the association of lncRNA expression and these endpoints. RESULTS AND LIMITATIONS: An integrative analysis revealed Prostate Cancer Associated Transcript-14 (PCAT-14) as the most prevalent lncRNA that is aberrantly expressed in prostate cancer patients. Down-regulation of PCAT-14 expression significantly associated with Gleason score and a greater probability of metastatic progression, overall survival, and prostate cancer-specific mortality across multiple independent datasets and ethnicities. Low PCAT-14 expression was implicated with genes involved in biological processes promoting aggressive disease. In-vitro analysis confirmed that low PCAT-14 expression increased migration while overexpressing PCAT-14 reduced cellular growth, migration, and invasion. CONCLUSIONS: We discovered that androgen-regulated PCAT-14 is overexpressed in prostate cancer, suppresses invasive phenotypes, and lower expression is significantly prognostic for multiple clinical endpoints supporting its significance for predicting metastatic disease that could be used to improve patient management. PATIENT SUMMARY: We discovered that aberrant prostate cancer associated transcript-14 expression during prostate cancer progression is prevalent across cancer patients. Prostate cancer associated transcript-14 is also prognostic for metastatic disease and survival highlighting its importance for stratifying patients that could benefit from treatment intensification.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Idoso , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , RNA Longo não Codificante/biossíntese
13.
Cell Discov ; 2: 15046, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462443

RESUMO

Specialized chromatin structures such as nucleosomes with specific histone modifications decorate exons in eukaryotic genomes, suggesting a functional connection between chromatin organization and the regulation of pre-mRNA splicing. Through profiling the functional location of Poly (ADP) ribose polymerase, we observed that it is associated with the nucleosomes at exon/intron boundaries of specific genes, suggestive of a role for this enzyme in alternative splicing. Poly (ADP) ribose polymerase has previously been implicated in the PARylation of splicing factors as well as regulation of the histone modification H3K4me3, a mark critical for co-transcriptional splicing. In light of these studies, we hypothesized that interaction of the chromatin-modifying factor, Poly (ADP) ribose polymerase with nucleosomal structures at exon-intron boundaries, might regulate pre-mRNA splicing. Using genome-wide approaches validated by gene-specific assays, we show that depletion of PARP1 or inhibition of its PARylation activity results in changes in alternative splicing of a specific subset of genes. Furthermore, we observed that PARP1 bound to RNA, splicing factors and chromatin, suggesting that Poly (ADP) ribose polymerase serves as a gene regulatory hub to facilitate co-transcriptional splicing. These studies add another function to the multi-functional protein, Poly (ADP) ribose polymerase, and provide a platform for further investigation of this protein's function in organizing chromatin during gene regulatory processes.

14.
PLoS One ; 10(8): e0135410, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305327

RESUMO

Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme involved in DNA repair, chromatin remodeling and gene expression. PARP1 interactions with chromatin architectural multi-protein complexes (i.e. nucleosomes) alter chromatin structure resulting in changes in gene expression. Chromatin structure impacts gene regulatory processes including transcription, splicing, DNA repair, replication and recombination. It is important to delineate whether PARP1 randomly associates with nucleosomes or is present at specific nucleosome regions throughout the cell genome. We performed genome-wide association studies in breast cancer cell lines to address these questions. Our studies show that PARP1 associates with epigenetic regulatory elements genome-wide, such as active histone marks, CTCF and DNase hypersensitive sites. Additionally, the binding of PARP1 to chromatin genome-wide is mutually exclusive with DNA methylation pattern suggesting a functional interplay between PARP1 and DNA methylation. Indeed, inhibition of PARylation results in genome-wide changes in DNA methylation patterns. Our results suggest that PARP1 controls the fidelity of gene transcription and marks actively transcribed gene regions by selectively binding to transcriptionally active chromatin. These studies provide a platform for developing our understanding of PARP1's role in gene regulation.


Assuntos
Metilação de DNA/genética , Poli(ADP-Ribose) Polimerases/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Células MCF-7 , Poli(ADP-Ribose) Polimerase-1 , Regiões Promotoras Genéticas
15.
Artigo em Inglês | MEDLINE | ID: mdl-25632406

RESUMO

High-throughput mRNA sequencing (also known as RNA-Seq) promises to be the technique of choice for studying transcriptome profiles. This technique provides the ability to develop precise methodologies for transcript and gene expression quantification, novel transcript and exon discovery, and splice variant detection. One of the limitations of current RNA-Seq methods is the dependency on annotated biological features (e.g. exons, transcripts, genes) to detect expression differences across samples. This forces the identification of expression levels and the detection of significant changes to known genomic regions. Any significant changes that occur in unannotated regions will not be captured. To overcome this limitation, we developed a novel segmentation approach, Island-Based (IB), for analyzing differential expression in RNA-Seq and targeted sequencing (exome capture) data without specific knowledge of an isoform. The IB segmentation determines individual islands of expression based on windowed read counts that can be compared across experimental conditions to determine differential island expression. In order to detect differentially expressed genes, the significance of islands (p-values) are combined using Fisher's method. We tested and evaluated the performance of our approach by comparing it to the existing differentially expressed gene (DEG) methods: CuffDiff, DESeq, and edgeR using two benchmark MAQC RNA-Seq datasets. The IB algorithm outperforms all three methods in both datasets as illustrated by an increased auROC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA