Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 151: 109687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866348

RESUMO

Meningitis caused by Gram-negative bacteria is a serious public health problem, causing morbidity and mortality in both children and adults. Here, we propose a novel experimental model using Nile tilapia (Oreochromis niloticus) to study neuroinflammation. The fish were infected with Aeromonas hydrophila, and the course of infection was monitored in the peripheral blood. Septicemia was obvious in the blood, while in the brain tissue, infection of the meninges was present. The histopathological examination showed suppurative meningitis, and the cellular immune response in the brain tissue during infection was mediated by microglia. These cells were morphologically characterized and phenotyped by MHC class II markers and CD68. The increased production of TNF-α, IL-1ß and iNOS supported the infiltration of these cells during the neuroinflammatory process. In the proteomic analysis of A. hydrophila isolated from brain tissue, we found chemotactic and transport proteins, proteolytic enzymes and enzymes associated with the dismutation of nitric oxide (NO), as well as motor proteins and those responsible for cell division. After characterizing the most abundant proteins during the course of infection, we investigated the druggability index of these proteins and identified promising peptide sequences as molecular targets that are similar among bacteria. Thus, these findings deepened the understanding of the pathophysiology of meningitis caused by A. hydrophila. Moreover, through the proteomics analysis, important mechanisms and pathways used by the pathogen to subvert the host response were revealed, providing insights for the development of novel antibiotics and vaccines.


Assuntos
Aeromonas hydrophila , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Proteômica , Fatores de Virulência , Animais , Aeromonas hydrophila/fisiologia , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Fatores de Virulência/imunologia , Meningites Bacterianas/veterinária , Meningites Bacterianas/imunologia , Proteínas de Peixes/imunologia
2.
Genes Immun ; 23(1): 23-32, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34966170

RESUMO

Two non-inbred mouse lines, phenotypically selected for maximal (AIRmin) and minimal (AIRmax) acute inflammatory response, show differential susceptibility/resistance to the development of several chemically-induced tumor types. An intercross pedigree of these mice was generated and treated with the chemical carcinogen dimethylhydrazine, which induces lung and intestinal tumors. Genome wide high-density genotyping with the Restriction Site-Associated DNA genotyping (2B-RAD) technique was used to map genetic loci modulating individual genetic susceptibility to both lung and intestinal cancer. Our results evidence new common quantitative trait loci (QTL) for those phenotypes and provide an improved understanding of the relationship between genomic variation and individual genetic predisposition to tumorigenesis in different organs.


Assuntos
Neoplasias do Colo , Locos de Características Quantitativas , Animais , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Predisposição Genética para Doença , Pulmão , Camundongos , Camundongos Endogâmicos
3.
Fish Shellfish Immunol ; 130: 323-331, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122633

RESUMO

To identify activation pathways and effector mechanisms of innate immunity in fish has become relevant for the sanitary management of intensive fish farming. However, little is known about the blocking of cysteinyl leukotrienes receptors (CysLTRs) and their effects in teleost fish. Our study evaluated the anti-inflammatory effect of 250 and 500 µg zafirlukast (antagonist of CysLTRs)/kg b.w., administered orally in the diet, during acute inflammatory reaction induced by Aeromonas hydrophila bacterins in Oreochromis niloticus. 80 tilapia were distributed in 10 aquariums (100L of water each, n = 8) to constitute three treatments: Control (inoculated with A. hydrophila bacterin and untreated); Treated with 250 µg or 500 µg of zafirlukast/kg b.w. and inoculated. To be evaluated in three periods: 6, 24 and 48 h post-inoculation (HPI), totaling nine aquariums. A tenth group was sampled without any stimulus to constitute reference values (Physiological standards). Tilapia treated with zafirlukast demonstrated dose-response effect in the decrease of accumulated inflammatory cells, strongly influenced by granulocytes and macrophages. Zafirlukast treated-tilapia showed decrease in blood leukocyte counts (mainly neutrophils, and monocytes) and reactive oxygen species production. Treatment with zafirlukast resulted in down-regulation of ceruloplasmin, complement 3, alpha2-macroglobulin, transferrin and apolipoprotein A1, as well as up-regulation of haptoglobin. Our study provided convincing results in the pathophysiology of tilapia inflammatory reaction, considering that treatment with zafirlukast, antagonist of cysteinyl leukotriene receptors, resulted in a dose-response effect by suppressing the dynamics between leukocytes in the bloodstream and cell accumulation in the inflamed focus, as well as modulated the leukocyte oxidative burst and the acute phase protein response.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , alfa 2-Macroglobulinas Associadas à Gravidez , Tilápia , Aeromonas hydrophila/fisiologia , Animais , Anti-Inflamatórios , Apolipoproteína A-I , Vacinas Bacterianas , Ceruloplasmina , Complemento C3 , Feminino , Haptoglobinas , Indóis , Fenilcarbamatos , Gravidez , Espécies Reativas de Oxigênio , Receptores de Leucotrienos/genética , Sulfonamidas , Transferrinas , Água
4.
J Sci Food Agric ; 102(10): 4287-4295, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038166

RESUMO

BACKGROUND: Astaxanthin, classified as a xanthophyll, has antioxidant properties about 500 times greater than α-tocopherols and ten times greater than ß-carotenes. Based on the antioxidant activity of this carotenoid, this study aimed to evaluate the shelf-life of tilapia fillets (Oreochromis niloticus) fed with astaxanthin, by determining the microbiological quality (colimetry, counts of mesophilic and psychrotrophic microorganisms), physicochemical analyses (colorimetry, pH, thiobarbituric acid reactive substances (TBARS)) and sensory analysis. RESULTS: Tilapia supplemented with astaxanthin presented a reduction in the counts of microorganisms (mesophiles and psychrotrophics) and lower lipid oxidation index (TBARS), when compared to fillets of control fish. Colorimetric changes of fillet degradation were observed, associated with increased pH during storage, as well as loss of brightness and texture in addition to worsening of appearance and odor. These deteriorating changes were minimized using astaxanthin. CONCLUSION: Our results demonstrate the beneficial performance of astaxanthin in the shelf-life of tilapia fillets stored under refrigeration. Therefore, dietary supplementation with astaxanthin (100 and 200 mg kg-1 of feed) improves the microbiological and physicochemical quality of tilapia fillets during 50 days of shelf-life. © 2022 Society of Chemical Industry.


Assuntos
Tilápia , Animais , Conservação de Alimentos/métodos , Refrigeração , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Xantofilas/análise
5.
Fish Shellfish Immunol ; 118: 34-50, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464686

RESUMO

Group B Streptococcus (GBS) causes meningitis in neonates and Nile tilapia (Oreochromis niloticus). The molecular mechanisms regulating the intracellular survival of this pathogen in the host cell are complex and crucial for the progression of infection. Thus, we propose the use of GBS-infected Nile tilapia microglia as an in vitro model system simulating infection caused by homologous bacteria in humans. We used this model to evaluate the phagocytic activity, as well as the functional aspects of the capsular proteins A, B, C, and D and the major redox enzymes, and the synergistic role of mechanisms/proteins involved in blocking phagocytic process. We observed that in the intracellular phase, GBS showed enhanced synthesis of the polysaccharide capsule and used superoxide dismutase, thioredoxin, NADH oxidase, and alkyl hydroperoxide reductase to scavenge reactive oxygen species and reactive nitrogen species produced by the host cell. Furthermore, although these virulence mechanisms were effective during the initial hours of infection, they were not able to subvert microglial responses, which partially neutralized the infection. Altogether, our findings provided important information regarding the intracellular survival mechanisms of GBS and perspectives for the production of new drugs and vaccines, through the druggability analysis of specific proteins. In conclusion, tilapia microglia serve as a potent in vitro experimental model for the study of meningitis.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Doenças dos Peixes/microbiologia , Microglia , Oxirredução , Proteômica , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae
6.
Fish Shellfish Immunol ; 115: 134-141, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34098067

RESUMO

Streptococcosis causes great economic losses in intensive culture of tilapia. Vaccination is the most effective and safest way to tackle infectious diseases. Thus, this study sought the more effective and safer antigenic fraction after sonication of Streptococcus agalactiae to elaborate a vaccine against streptococcosis in Nile tilapia. For this, twenty-one days after vaccination with different fractions (soluble and insoluble) of S. agalactiae, the fish were challenged with the homologous strain (LD50). Then, samples were taken at zero, 14, 28, 60 and 90 days post-vaccination (DPV, n = 7). Blood and organs (cranial kidney, spleen and liver) were collected from vaccinated and unvaccinated fish. Finally, insoluble fraction vaccine presented the best effect, resulting in a 100% relative percent of survival (RPS) and without clinical manifestations. In view of the results, it was to evaluate the role of the insoluble fraction of the antigen in the protective immunity against streptococcosis. The results indicate that the spleen might be the main organ in the vaccine response in Nile tilapia due to the great morphological and immunological differences in vaccinated fish, evidenced by the greater of melanomacrophage centers (MMC) and IgM + lymphocytes in relation to the non-vaccinated fish. At 60 DPV, it was observed the peak of the protective immunity related to the maximum concentration of proteins, circulating leukocytes, antibody titers in the serum and tissue changes with greater expression of IgM + and MMC number in the spleen and kidney of Oreochromis niloticus. Vaccination with insoluble fraction of S. agalactiae was safe and provided effective protection against streptococcosis with maximum protective response at 60 DPV.


Assuntos
Antígenos de Bactérias/administração & dosagem , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Imunogenicidade da Vacina , Vacinas Estreptocócicas/administração & dosagem , Streptococcus agalactiae/imunologia , Vacinação/veterinária , Animais , Sonicação/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária
7.
Fish Shellfish Immunol ; 107(Pt A): 230-237, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33039531

RESUMO

In order to understand events and mechanisms present in the pathophysiology of tilapia's chronic inflammation and based on the immunomodulatory activity attributed to cyclophosphamide which is widely used to suppress immune responses in human medicine, the present study investigated the effects of cyclophosphamide (CYP) treatment on the modulation of foreign body inflammatory reaction in Nile tilapia (Oreochromis niloticus) with round glass coverslip implanted in the subcutaneous tissue (9 mm of diameter). Forty tilapia (151 ± 10,2 g) were randomly distributed in 5 aquariums (n = 8) with a capacity of 250 L of water each, to compose two treatments (sampled 3 and 6 days post-implantation): implanted/untreated (control) and implanted/treated with 200 mg of CYP kg-1 of b.w., through i.p. route. A fifth group (n = 8) was sampled without any stimulus (naive) to obtain reference values. CYP-treated tilapia showed decrease in macrophage accumulation, giant cell formation and Langhans cells on the glass coverslip when compared to control fish. The treatment with CYP resulted in decrease of leukocyte and thrombocyte counts. Decrease in alpha-2-macroglobulin, ceruloplasmin, albumin and transferrin levels, as well as increase in haptoglobin, complement C3 and apolipoprotein A1 were observed in tilapias during foreign body inflammation. Blood levels of complement C3, alpha-2-macroglobulin, ceruloplasmin and transferrin were modulated by treatment with CYP. Therefore, the treatment with 200 mg of CYP kg-1 of b.w. in tilapia resulted in an anti-inflammatory effect by suppressing the dynamics between leukocytes in the bloodstream and macrophage accumulation with giant cell formation in the inflamed focus, as well as by modulating APPs during foreign body reaction.


Assuntos
Ciclídeos/imunologia , Ciclofosfamida/farmacologia , Doenças dos Peixes/imunologia , Reação a Corpo Estranho/veterinária , Imunidade Inata , Imunossupressores/farmacologia , Animais , Reação a Corpo Estranho/imunologia
8.
Microbes Infect ; : 105411, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216617

RESUMO

Genetics is central to the susceptibility or resistance to autoimmunity, and mounting evidence indicates that the intestinal microbiota also plays an essential role. In murine arthritis models, short-chain fat acid supplementation reduces disease severity by modulating tryptophan-metabolizing bacteria. Common microbiota transfer methods modulate arthritis severity, however, they are not practical for chronic models such as pristane-induced arthritis (PIA). PIA-resistant (HIII) and PIA-susceptible (LIII) mice harbor diverse intestinal microbiomes, which might be implicated in their divergent susceptibility. To investigate this hypothesis, we used cross-fostering to stably transfer the microbiota. In this study, we show that extreme susceptibility to arthritis can be modulated by early microbiota transfer, with long-lasting effects. HIII and LIII pups were cross-fostered and injected with pristane after weaning. PIA severity in cross-fostered LIII mice was significantly reduced in the chronic phase. Metagenomic analyses showed that HIII and LIII microbiomes were partly shifted by cross-fostering. Microbial groups whose abundance was associated with either HIII or LIII mice presented similar composition in cross-fostered mice of the opposite strains, suggesting a role in PIA susceptibility. Identification of bacterial groups that modulate chronic arthritis will contribute novel insights on the pathogenesis of human rheumatoid arthritis and targets for replication and functional studies.

9.
Sci Rep ; 13(1): 8060, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198208

RESUMO

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Peixe-Zebra , Macrófagos , Peptídeos
10.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015142

RESUMO

Peptide-protein interactions are involved in various fundamental cellular functions, and their identification is crucial for designing efficacious peptide therapeutics. Drug-target interactions can be inferred by in silico prediction using bioinformatics and computational tools. We patented the TnP family of synthetic cyclic peptides, which is in the preclinical stage of developmental studies for chronic inflammatory diseases such as multiple sclerosis. In an experimental autoimmune enceph-alomyelitis model, we found that TnP controls neuroinflammation and prevents demyelination due to its capacity to cross the blood-brain barrier and to act in the central nervous system blocking the migration of inflammatory cells responsible for neuronal degeneration. Therefore, the identification of potential targets for TnP is the objective of this research. In this study, we used bioinformatics and computational approaches, as well as bioactivity databases, to evaluate TnP-target prediction for proteins that were not experimentally tested, specifically predicting the 3D structure of TnP and its biochemical characteristics, TnP-target protein binding and docking properties, and dynamics of TnP competition for the protein/receptor complex interaction, construction of a network of con-nectivity and interactions between molecules as a result of TnP blockade, and analysis of similarities with bioactive molecules. Based on our results, integrins were identified as important key proteins and considered responsible to regulate TnP-governed pharmacological effects. This comprehensive in silico study will help to understand how TnP induces its anti-inflammatory effects and will also facilitate the identification of possible side effects, as it shows its link with multiple biologically important targets in humans.

11.
Front Immunol ; 13: 867195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432328

RESUMO

Tuberculosis is one of the deadliest infectious diseases and a huge healthcare burden in many countries. New vaccines, including recombinant BCG-based candidates, are currently under evaluation in clinical trials. Our group previously showed that a recombinant BCG expressing LTAK63 (rBCG-LTAK63), a genetically detoxified subunit A of heat-labile toxin (LT) from Escherichia coli, induces improved protection against Mycobacterium tuberculosis (Mtb) in mouse models. This construct uses a traditional antibiotic resistance marker to enable heterologous expression. In order to avoid the use of these markers, not appropriate for human vaccines, we used CRISPR/Cas9 to generate unmarked mutations in the lysA gene, thus obtaining a lysine auxotrophic BCG strain. A mycobacterial vector carrying lysA and ltak63 gene was used to complement the auxotrophic BCG which co-expressed the LTAK63 antigen (rBCGΔ-LTAK63) at comparable levels to the original construct. The intranasal challenge with Mtb confirmed the superior protection induced by rBCGΔ-LTAK63 compared to wild-type BCG. Furthermore, mice immunized with rBCGΔ-LTAK63 showed improved lung function. In this work we showed the practical application of CRISPR/Cas9 in the tuberculosis vaccine development field.


Assuntos
Vacinas contra a Tuberculose , Tuberculose , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Animais , Vacina BCG/genética , Sistemas CRISPR-Cas , Escherichia coli , Camundongos , Vacinas contra a Tuberculose/genética
12.
Front Immunol ; 13: 943558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119106

RESUMO

Tuberculosis (TB) is one of the deadliest infectious diseases around the world. Prevention is based on the prophylactic use of BCG vaccine, effective in infants but as protection wanes with time, adults are less protected. Additionally, chemotherapy requires the use of many antibiotics for several months to be effective. Immunotherapeutic approaches can activate the immune system, intending to assist chemotherapy of TB patients, improving its effectiveness, and reducing treatment time. In this work, the recombinant BCG expressing LTAK63 (rBCG-LTAK63) was evaluated for its immunotherapeutic potential against TB. Bacillary load, immune response, and lung inflammation were evaluated in mice infected with Mycobacterium tuberculosis (Mtb) and treated either with BCG or rBCG-LTAK63 using different routes of administration. Mice infected with Mtb and treated intranasally or intravenously with rBCG-LTAK63 showed a reduced bacillary load and lung inflammatory area when compared to the group treated with BCG. In the spleen, rBCG-LTAK63 administered intravenously induced a higher inflammatory response of CD4+ T cells. On the other hand, in the lungs there was an increased presence of CD4+IL-10+ and regulatory T cells. When combined with a short-term chemotherapy regimen, rBCG-LTAK63 administered subcutaneously or intravenously decreases the Mtb bacillary load, increases the anti-inflammatory response, and reduces tissue inflammation. These findings highlight the potential of rBCG-LTAK63 in assisting chemotherapy against Mtb.


Assuntos
Mycobacterium bovis , Tuberculose , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Animais , Antibacterianos , Anti-Inflamatórios , Antígenos de Bactérias , Vacina BCG , Humanos , Interleucina-10 , Camundongos , Tuberculose/prevenção & controle
13.
Front Immunol ; 13: 899569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799794

RESUMO

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1ß, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1ß production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between "High" and "Low" responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-ß production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1ß response and the formation of ASC specks in stimulated cells. IL-1ß and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ligação Genética , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos , Locos de Características Quantitativas
14.
Sci Rep ; 12(1): 3890, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273234

RESUMO

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.


Assuntos
COVID-19/terapia , Imunoglobulinas/uso terapêutico , Receptores Imunológicos/uso terapêutico , SARS-CoV-2/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Cavalos/imunologia , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/isolamento & purificação , Masculino , Mesocricetus/imunologia , Plasmaferese/veterinária , Receptores Imunológicos/imunologia
15.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942250

RESUMO

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Feminino , Humanos , SARS-CoV-2 , Peixe-Zebra
16.
Animals (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233716

RESUMO

Streptococcus agalactiae (Sta) of Lancefield group B is the primary etiological agent of bacterial meningitis in Nile tilapia and newborn humans. Thus, the study of this disease is of fundamental importance for aquaculture and human medicine. Additionally, elucidation of the mechanisms involved in the host-pathogenic response is important for the success of new therapies. In the present study, we elucidated important aspects of the innate immune response in the brain tissue of Nile tilapia (Oreochromis niloticus) infected by Sta. The neuroinflammatory process in the meninges started with the migration of MHC class II and CD68 + cells, production of TNF-alpha, and the effective immune response to Sta was mediated by the increased iNOs+. In conclusion, the present study brings a partial understanding of the pathophysiological and neuroinflammatory mechanisms in meningitis in Sta infected tilapia, enabling important advances in the therapy of this disease as well as the possibility of using this biological model to understand human meningitis.

17.
PLoS One ; 15(9): e0238823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970684

RESUMO

Mucoadhesive polymeric nanocapsules have attracted interest of researchers from different fields from natural sciences because of their ability to interact with the mucosa and increase drug permeation. Anesthesia by immersion causes absorption through the skin and gills of fish, so it is important to evaluate the exposure of these organs to drug nanosystems. Benzocaine (BENZ) is one of the most popular anesthetic agents used in fish anesthesia, but it has drawbacks because of its low bioavailability, resulting in weak absorption after immersion. Here we describe method developed for preparing and characterizing chitosan-coated PLGA mucoadhesive nanoparticles containing BENZ (NPMAs) for zebrafish immersion anesthesia. We determined the lowest effective concentration, characterized the interaction of the mucoadhesive system with fish, measured the anesthetic efficacy, and evaluated possible toxic effects in embryos and adults exposed to the nanoformulations. This study opens perspectives for using nanoformulations prepared with BENZ in aquaculture, allowing reduction of dosage as well as promoting more effective anesthesia and improved interaction with the mucoadhesive system of fish.


Assuntos
Anestesia/veterinária , Benzocaína/administração & dosagem , Nanocápsulas/administração & dosagem , Peixe-Zebra , Animais , Aquicultura , Quitosana/administração & dosagem , Quitosana/toxicidade , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Brânquias/efeitos dos fármacos , Nanocápsulas/toxicidade , Pele/efeitos dos fármacos
19.
Toxicon ; 66: 18-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23416799

RESUMO

Ophidian accidents represent a great public health problem in developing countries. Recent studies have shown that antibodies produced in laying hens could be an alternative method for producing antivenin in mammals. In this study we analyzed the production of IgY antibodies in laying hens inoculated with snake venom from the Bothrops and Crotalus genera over a 360-day period. IgY antibodies present in the serum and egg yolks were analyzed according to avidity, antigen recognition pattern and efficiency in neutralizing the venom. The levels of anti-bothropic and anti-crotalic IgY antibodies increased significantly after the third immunization, and remained at these levels until the end of the experiment. Significantly high avidity levels were observed for anti-bothropic IgY antibodies on the 142nd day and for anti-crotalic antibodies on the 232nd day after the first immunization. Anti-bothropic IgY antibodies recognized antigens with molecular masses ranging from 25 kDa to 50 kDa, whereas anti-crotalic IgY antibodies mainly recognized antigens with molecular masses of 14 kDa and 30 kDa. An increase in the antigens recognized by the antivenins was observed during the experimental period. Samples of bothropic IgY antivenin antibodies presented an efficiency of 290 µl/3 DL50, a potency of 0.307 mg/ml and a specific activity of 0.230. Samples of anti-crotalic IgY antibodies presented an efficiency of 246 µl/4 DL50, a potency of 0.829 mg/ml and a specific activity of 0.271. These results show that the administration of successive doses of the venoms for more than 6 months results in an antivenin with higher avidity that is able to recognize a greater number of antigens present in the venoms. These characteristics indicate a more efficient and potent antivenin than what has been described in other studies.


Assuntos
Antivenenos/biossíntese , Antivenenos/farmacologia , Galinhas/imunologia , Venenos de Crotalídeos/imunologia , Imunoglobulinas/imunologia , Animais , Antivenenos/imunologia , Bioensaio , Bothrops/fisiologia , Crotalus/fisiologia , Feminino , Dose Letal Mediana , Camundongos , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA