Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2216820120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098068

RESUMO

Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst  -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst  -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst  -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.


Assuntos
Relógios Circadianos , Luz , Camundongos , Feminino , Masculino , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Fotoperíodo , Relógios Circadianos/genética
2.
Proc Natl Acad Sci U S A ; 120(49): e2314857120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019855

RESUMO

The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of a central circadian clock that orchestrates overt rhythms of physiology and behavior. Circadian timekeeping requires intercellular communication among SCN neurons, and multiple signaling pathways contribute to SCN network coupling. Gamma-aminobutyric acid (GABA) is produced by virtually all SCN neurons, and previous work demonstrates that this transmitter regulates coupling in the adult SCN but is not essential for the nucleus to sustain overt circadian rhythms. Here, we show that the deletion of the gene that codes for the GABA vesicular transporter Vgat from neuromedin-S (NMS)+ neurons-a subset of neurons critical for SCN function-causes arrhythmia of locomotor activity and sleep. Further, NMS-Vgat deletion impairs intrinsic clock gene rhythms in SCN explants cultured ex vivo. Although vasoactive intestinal polypeptide (VIP) is critical for SCN function, Vgat deletion from VIP-expressing neurons did not lead to circadian arrhythmia in locomotor activity rhythms. Likewise, adult SCN-specific deletion of Vgat led to mild impairment of behavioral rhythms. Our results suggest that while the removal of GABA release from the adult SCN does not affect the pacemaker's ability to sustain overt circadian rhythms, its removal from a critical subset of neurons within the SCN throughout development removes the nucleus ability to sustain circadian rhythms. Our findings support a model in which SCN GABA release is critical for the developmental establishment of intercellular network properties that define the SCN as a central pacemaker.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Relógios Circadianos/fisiologia , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Núcleo Supraquiasmático/metabolismo , Ácido gama-Aminobutírico/metabolismo , Arritmias Cardíacas/metabolismo
3.
Semin Cell Dev Biol ; 126: 45-55, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33994299

RESUMO

The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.


Assuntos
Relógios Circadianos , Animais , Ritmo Circadiano/fisiologia , Feminino , Masculino , Caracteres Sexuais , Núcleo Supraquiasmático/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37481773

RESUMO

Decades have now passed since Colin Pittendrigh first proposed a model of a circadian clock composed of two coupled oscillators, individually responsive to the rising and setting sun, as a flexible solution to the challenge of behavioral and physiological adaptation to the changing seasons. The elegance and predictive power of this postulation has stimulated laboratories around the world in searches to identify and localize such hypothesized evening and morning oscillators, or sets of oscillators, in insects, rodents, and humans, with experimental designs and approaches keeping pace over the years with technological advances in biology and neuroscience. Here, we recount the conceptual origin and highlight the subsequent evolution of this dual oscillator model for the circadian clock in the mammalian suprachiasmatic nucleus; and how, despite our increasingly sophisticated view of this multicellular pacemaker, Pittendrigh's binary conception has remained influential in our clock models and metaphors.

5.
N Engl J Med ; 381(5): 420-431, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365800

RESUMO

BACKGROUND: Severe anemia (hemoglobin level, <6 g per deciliter) is a leading cause of hospital admission and death in children in sub-Saharan Africa. The World Health Organization recommends transfusion of 20 ml of whole-blood equivalent per kilogram of body weight for anemia, regardless of hemoglobin level. METHODS: In this factorial, open-label trial, we randomly assigned Ugandan and Malawian children 2 months to 12 years of age with a hemoglobin level of less than 6 g per deciliter and severity features (e.g., respiratory distress or reduced consciousness) to receive immediate blood transfusion with 20 ml per kilogram or 30 ml per kilogram. Three other randomized analyses investigated immediate as compared with no immediate transfusion, the administration of postdischarge micronutrients, and postdischarge prophylaxis with trimethoprim-sulfamethoxazole. The primary outcome was 28-day mortality. RESULTS: A total of 3196 eligible children (median age, 37 months; 2050 [64.1%] with malaria) were assigned to receive a transfusion of 30 ml per kilogram (1598 children) or 20 ml per kilogram (1598 children) and were followed for 180 days. A total of 1592 children (99.6%) in the higher-volume group and 1596 (99.9%) in the lower-volume group started transfusion (median, 1.2 hours after randomization). The mean (±SD) volume of total blood transfused per child was 475±385 ml and 353±348 ml, respectively; 197 children (12.3%) and 300 children (18.8%) in the respective groups received additional transfusions. Overall, 55 children (3.4%) in the higher-volume group and 72 (4.5%) in the lower-volume group died before 28 days (hazard ratio, 0.76; 95% confidence interval [CI], 0.54 to 1.08; P = 0.12 by log-rank test). This finding masked significant heterogeneity in 28-day mortality according to the presence or absence of fever (>37.5°C) at screening (P=0.001 after Sidak correction). Among the 1943 children (60.8%) without fever, mortality was lower with a transfusion volume of 30 ml per kilogram than with a volume of 20 ml per kilogram (hazard ratio, 0.43; 95% CI, 0.27 to 0.69). Among the 1253 children (39.2%) with fever, mortality was higher with 30 ml per kilogram than with 20 ml per kilogram (hazard ratio, 1.91; 95% CI, 1.04 to 3.49). There was no evidence of differences between the randomized groups in readmissions, serious adverse events, or hemoglobin recovery at 180 days. CONCLUSIONS: Overall mortality did not differ between the two transfusion strategies. (Funded by the Medical Research Council and Department for International Development, United Kingdom; TRACT Current Controlled Trials number, ISRCTN84086586.).


Assuntos
Anemia/terapia , Transfusão de Sangue , Hemoglobinas/análise , Anemia/complicações , Anemia/mortalidade , Transfusão de Sangue/economia , Criança , Pré-Escolar , Análise Custo-Benefício , Feminino , Febre/complicações , Seguimentos , Custos de Cuidados de Saúde , Humanos , Lactente , Tempo de Internação/economia , Malária/complicações , Malaui/epidemiologia , Masculino , Readmissão do Paciente/estatística & dados numéricos , Reação Transfusional/epidemiologia , Uganda/epidemiologia
6.
N Engl J Med ; 381(5): 407-419, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365799

RESUMO

BACKGROUND: The World Health Organization recommends not performing transfusions in African children hospitalized for uncomplicated severe anemia (hemoglobin level of 4 to 6 g per deciliter and no signs of clinical severity). However, high mortality and readmission rates suggest that less restrictive transfusion strategies might improve outcomes. METHODS: In this factorial, open-label, randomized, controlled trial, we assigned Ugandan and Malawian children 2 months to 12 years of age with uncomplicated severe anemia to immediate transfusion with 20 ml or 30 ml of whole-blood equivalent per kilogram of body weight, as determined in a second simultaneous randomization, or no immediate transfusion (control group), in which transfusion with 20 ml of whole-blood equivalent per kilogram was triggered by new signs of clinical severity or a drop in hemoglobin to below 4 g per deciliter. The primary outcome was 28-day mortality. Three other randomizations investigated transfusion volume, postdischarge supplementation with micronutrients, and postdischarge prophylaxis with trimethoprim-sulfamethoxazole. RESULTS: A total of 1565 children (median age, 26 months) underwent randomization, with 778 assigned to the immediate-transfusion group and 787 to the control group; 984 children (62.9%) had malaria. The children were followed for 180 days, and 71 (4.5%) were lost to follow-up. During the primary hospitalization, transfusion was performed in all the children in the immediate-transfusion group and in 386 (49.0%) in the control group (median time to transfusion, 1.3 hours vs. 24.9 hours after randomization). The mean (±SD) total blood volume transfused per child was 314±228 ml in the immediate-transfusion group and 142±224 ml in the control group. Death had occurred by 28 days in 7 children (0.9%) in the immediate-transfusion group and in 13 (1.7%) in the control group (hazard ratio, 0.54; 95% confidence interval [CI], 0.22 to 1.36; P = 0.19) and by 180 days in 35 (4.5%) and 47 (6.0%), respectively (hazard ratio, 0.75; 95% CI, 0.48 to 1.15), without evidence of interaction with other randomizations (P>0.20) or evidence of between-group differences in readmissions, serious adverse events, or hemoglobin recovery at 180 days. The mean length of hospital stay was 0.9 days longer in the control group. CONCLUSIONS: There was no evidence of differences in clinical outcomes over 6 months between the children who received immediate transfusion and those who did not. The triggered-transfusion strategy in the control group resulted in lower blood use; however, the length of hospital stay was longer, and this strategy required clinical and hemoglobin monitoring. (Funded by the Medical Research Council and Department for International Development; TRACT Current Controlled Trials number, ISRCTN84086586.).


Assuntos
Anemia/terapia , Transfusão de Sangue , Hemoglobinas/análise , Tempo para o Tratamento , Anemia/complicações , Anemia/mortalidade , Transfusão de Sangue/economia , Criança , Pré-Escolar , Análise Custo-Benefício , Feminino , Seguimentos , Custos de Cuidados de Saúde , Humanos , Lactente , Tempo de Internação/economia , Malária/complicações , Malaui/epidemiologia , Masculino , Readmissão do Paciente/estatística & dados numéricos , Reação Transfusional/epidemiologia , Uganda/epidemiologia
7.
J Hum Genet ; 67(1): 65-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34230590

RESUMO

Recently, a common genetic variant E756del in the human gene PIEZO1 was associated with protection from severe malaria. Here, we performed a genetic association study of this gain-of-function variant in a large case-control study including 4149 children from the Ashanti Region in Ghana, West Africa. The statistical analysis did not indicate an association with protection from severe malaria and, thus, providing evidence against a strong protective effect of the PIEZO1 E756del variant on severe malaria susceptibility.


Assuntos
Resistência à Doença/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Canais Iônicos/genética , Malária/genética , Deleção de Sequência , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Criança , Feminino , Estudos de Associação Genética/métodos , Genótipo , Gana , Humanos , Malária/diagnóstico , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
8.
Neuroendocrinology ; 112(9): 904-916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856551

RESUMO

BACKGROUND/AIMS: Circadian rhythms in behavior and physiology are programmed by the suprachiasmatic nucleus (SCN) of the hypothalamus. A subset of SCN neurons produce the neuropeptide arginine vasopressin (AVP), but it remains unclear whether AVP signaling influences the SCN clock directly. METHODS: Here, we test that AVP signaling acting through V1A and V1B receptors influences molecular rhythms in SCN neurons. V1 receptor agonists were applied ex vivo to PERIOD2::LUCIFERASE SCN slices, allowing for real-time monitoring of changes in molecular clock function. RESULTS: V1A/B agonists reset the phase of the SCN molecular clock in a time-dependent manner, with larger magnitude responses by the female SCN. Further, we found evidence that both Gαq and Gαs signaling pathways interact with V1A/B-induced SCN resetting, and that this response requires vasoactive intestinal polypeptide (VIP) signaling. CONCLUSIONS: Collectively, this work indicates that AVP signaling resets SCN molecular rhythms in conjunction with VIP signaling and in a manner influenced by sex. This highlights the utility of studying clock function in both sexes and suggests that signal integration in central clock circuits regulates emergent properties important for the control of daily rhythms in behavior and physiology.


Assuntos
Relógios Circadianos , Peptídeo Intestinal Vasoativo , Arginina Vasopressina/metabolismo , Ritmo Circadiano/fisiologia , Feminino , Humanos , Masculino , Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/metabolismo
9.
Horm Behav ; 127: 104888, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202247

RESUMO

Arginine vasopressin (AVP) is a neurohormone that alters cellular physiology through both endocrine and synaptic signaling. Circadian rhythms in AVP release and other biological processes are driven by the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Loss of vasopressin signaling alters circadian behavior, but the basis of these effects remains unclear. Here we investigate the role of AVP signaling in circadian timekeeping by analyzing behavior and SCN function in a novel AVP-deficient mouse model. Consistent with previous work, loss of AVP signaling increases water consumption and accelerates recovery to simulated jetlag. We expand on these results to show that loss of AVP increases period, imprecision and plasticity of behavioral rhythms under constant darkness. Interestingly, the effect of AVP deficiency on circadian period was influenced by sex, with loss of AVP lengthening period in females but not males. Examining SCN function directly with ex vivo bioluminescence imaging of clock protein expression, we demonstrate that loss of AVP signaling modulates the period, precision, and phase relationships of SCN neurons in both sexes. This pattern of results suggests that there are likely sex differences in downstream targets of the SCN. Collectively, this work indicates that AVP signaling modulates circadian circuits in a manner influenced by sex, which provides new insight into sexual dimorphisms in the regulation of daily rhythms.


Assuntos
Arginina Vasopressina/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Rede Nervosa/metabolismo , Animais , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/fisiologia , Caracteres Sexuais , Transdução de Sinais/genética , Núcleo Supraquiasmático/metabolismo
10.
BMC Public Health ; 21(1): 1480, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325680

RESUMO

BACKGROUND: Severe anaemia (haemoglobin < 6 g/dL) is a leading cause of recurrent hospitalisation in African children. We investigated predictors of readmission in children hospitalised with severe anaemia in the TRACT trial (ISRCTN84086586) in order to identify potential future interventions. METHODS: Secondary analyses of the trial examined 3894 children from Uganda and Malawi surviving a hospital episode of severe anaemia. Predictors of all-cause readmission within 180 days of discharge were identified using multivariable regression with death as a competing risk. Groups of children with similar characteristics were identified using hierarchical clustering. RESULTS: Of the 3894 survivors 682 (18%) were readmitted; 403 (10%) had ≥2 re-admissions over 180 days. Three main causes of readmission were identified: severe anaemia (n = 456), malaria (n = 252) and haemoglobinuria/dark urine syndrome (n = 165). Overall, factors increasing risk of readmission included HIV-infection (hazard ratio 2.48 (95% CI 1.63-3.78), p < 0.001); ≥2 hospital admissions in the preceding 12 months (1.44(1.19-1.74), p < 0.001); history of transfusion (1.48(1.13-1.93), p = 0.005); and missing ≥1 trial medication dose (proxy for care quality) (1.43 (1.21-1.69), p < 0.001). Children with uncomplicated severe anaemia (Hb 4-6 g/dL and no severity features), who never received a transfusion (per trial protocol) during the initial admission had a substantially lower risk of readmission (0.67(0.47-0.96), p = 0.04). Malaria (among children with no prior history of transfusion) (0.60(0.47-0.76), p < 0.001); younger-age (1.07 (1.03-1.10) per 1 year younger, p < 0.001) and known sickle cell disease (0.62(0.46-0.82), p = 0.001) also decreased risk of readmission. For anaemia re-admissions, gross splenomegaly and enlarged spleen increased risk by 1.73(1.23-2.44) and 1.46(1.18-1.82) respectively compared to no splenomegaly. Clustering identified four groups of children with readmission rates from 14 to 20%. The cluster with the highest readmission rate was characterised by very low haemoglobin (mean 3.6 g/dL). Sickle Cell Disease (SCD) predominated in two clusters associated with chronic repeated admissions or severe, acute presentations in largely undiagnosed SCD. The final cluster had high rates of malaria (78%), severity signs and very low platelet count, consistent with acute severe malaria. CONCLUSIONS: Younger age, HIV infection and history of previous hospital admissions predicted increased risk of readmission. However, no obvious clinical factors for intervention were identified. As missing medication doses was highly predictive, attention to care related factors may be important. TRIAL REGISTRATION: ISRCTN ISRCTN84086586 .


Assuntos
Anemia , Infecções por HIV , Anemia/epidemiologia , Anemia/terapia , Criança , Humanos , Incidência , Malaui/epidemiologia , Readmissão do Paciente , Uganda/epidemiologia
11.
Eur J Neurosci ; 51(1): 82-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30402923

RESUMO

Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping is endogenous and does not require exposure to external cues during development. Nevertheless, the circadian system is not fully formed at birth in many mammalian species and it is important to understand how SCN development can affect the function of the circadian system in adulthood. The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, and hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN development that may contribute to the function of the master clock during adulthood. Additional work aimed at decoding the mechanisms that guide circadian development is expected to provide a solid foundation upon which to better understand the sources and factors contributing to aberrant maturation of clock function.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Mamíferos , Camundongos , Ratos , Núcleo Supraquiasmático
12.
BMC Med ; 17(1): 122, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256761

RESUMO

BACKGROUND: World Health Organization rehydration management guidelines (plan C) for severe dehydration are widely practiced in resource-poor settings, but never formally evaluated in a trial. The Fluid Expansion as a Supportive Therapy trial raised concerns regarding the safety of bolus therapy for septic shock, warranting a formal evaluation of rehydration therapy for gastroenteritis. METHODS: A multi-centre open-label phase II randomised controlled trial evaluated two rehydration strategies in 122 Ugandan/Kenyan children aged 60 days to 12 years with severe dehydration secondary to gastroenteritis. We compared the safety and efficacy of standard rapid rehydration using Ringer's lactate (100 ml/kg over 3 h (6 h if < 1 year), incorporating 0.9% saline boluses for children with shock (plan C) versus slower rehydration: 100 ml/kg Ringer's lactate over 8 h (all ages) without boluses (slow: experimental). The primary outcome was the frequency of serious adverse events (SAE) within 48 h including cardiovascular, respiratory and neurological complications. Secondary outcomes included clinical, biochemical and physiological measures of response to treatment by intravenous rehydration. RESULTS: One hundred twenty-two eligible children (median (IQR) age 8 (6-12) months) were randomised to plan C (n = 61) or slow (n = 61), with two (2%) lost to follow-up at day 7). Following randomisation mean (SD) time to start intravenous rehydration started was 15 min (18) in both arms. Mean (SD) fluid received by 1 hour was greater in plan C (mean 20.2 ml/kg (12.2) and 33.1 ml/kg (17) for children < 1 year and >- 1 year respectively) versus 10.4 ml/kg (6.6) in slow arm. By 8 hours volume received were similar mean (SD) plan C: 96.3 ml/kg (15.6) and 97.8 ml/kg (10.0) for children < 1 and ≥ 1 year respectively vs 93.2 ml/kg (12.2) in slow arm. By 48-h, three (5%) plan C vs two (3%) slow had an SAE (risk ratio 0.67, 95% CI 0.12-3.85, p = 0.65). There was no difference in time to the correction of dehydration (p = 0.9) or time to discharge (p = 0.8) between groups. Atrial natriuretic peptide levels rose substantially by 8 hours in both arms, which persisted to day 7. Day 7 weights suggested only 33 (29%) could be retrospectively classified as severely dehydration (≥ 10% weight loss). CONCLUSION: Slower rehydration over 8 hours appears to be safe, easier to implement than plan C. Future large trials with mortality as the primary endpoint are warranted. TRIAL REGISTRATION: ISRCTN67518332 . Date applied 31 August 2016.


Assuntos
Desidratação/diagnóstico , Hidratação/métodos , Gastroenterite/terapia , Criança , Pré-Escolar , Desidratação/patologia , Desidratação/terapia , Feminino , Gastroenterite/patologia , Humanos , Lactente , Quênia , Masculino , Estudos Retrospectivos
13.
Crit Care ; 23(1): 377, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775837

RESUMO

BACKGROUND: African children hospitalised with severe febrile illness have a high risk of mortality. The Fluid Expansion As Supportive Therapy (FEAST) trial (ISCRTN 69856593) demonstrated increased mortality risk associated with fluid boluses, but the temporal relationship to bolus therapy and underlying mechanism remains unclear. METHODS: In a post hoc retrospective analysis, flexible parametric models were used to compare change in mortality risk post-randomisation in children allocated to bolus therapy with 20-40 ml/kg 5% albumin or 0.9% saline over 1-2 h or no bolus (control, 4 ml/kg/hour maintenance), overall and for different terminal clinical events (cardiogenic, neurological, respiratory, or unknown/other). RESULTS: Two thousand ninety-seven and 1041 children were randomised to bolus vs no bolus, of whom 254 (12%) and 91 (9%) respectively died within 28 days. Median (IQR) bolus fluid in the bolus groups received by 4 h was 20 (20, 40) ml/kg and was the same at 8 h; total fluids received in bolus groups at 4 h and 8 h were 38 (28, 43) ml/kg and 40 (30, 50) ml/kg, respectively. Total fluid volumes received in the control group by 4 h and 8 h were median (IQR) 10 (6, 15) ml/kg and 10 (10, 26) ml/kg, respectively. Mortality risk was greatest 30 min post-randomisation in both groups, declining sharply to 4 h and then more slowly to 28 days. Maximum mortality risk was similar in bolus and no bolus groups; however, the risk declined more slowly in the bolus group, with significantly higher mortality risk compared to the no bolus group from 1.6 to 101 h (4 days) post-randomisation. The delay in decline in mortality risk in the bolus groups was most pronounced for cardiogenic modes of death. CONCLUSIONS: The increased risk from bolus therapy was not due to a mechanism occurring immediately after bolus administration. Excess mortality risk in the bolus group resulted from slower decrease in mortality risk over the ensuing 4 days. Thus, administration of modest bolus volumes appeared to prevent mortality risk declining at the same rate that it would have done without a bolus, rather than harm associated with bolus resulting from a concurrent increased risk of death peri-bolus administration. TRIAL REGISTRATION: ISRCTN69856593. Date of registration 15 December 2008.


Assuntos
Hidratação , Infecções , Criança , Humanos , Ressuscitação , Estudos Retrospectivos , Tempo
14.
J Neurosci ; 35(40): 13587-98, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446213

RESUMO

Individuals with Angelman syndrome (AS) suffer sleep disturbances that severely impair quality of life. Whether these disturbances arise from sleep or circadian clock dysfunction is currently unknown. Here, we explored the mechanistic basis for these sleep disorders in a mouse model of Angelman syndrome (Ube3a(m-/p+) mice). Genetic deletion of the maternal Ube3a allele practically eliminates UBE3A protein from the brain of Ube3a(m-/p+) mice, because the paternal allele is epigenetically silenced in most neurons. However, we found that UBE3A protein was present in many neurons of the suprachiasmatic nucleus--the site of the mammalian circadian clock--indicating that Ube3a can be expressed from both parental alleles in this brain region in adult mice. We found that while Ube3a(m-/p+) mice maintained relatively normal circadian rhythms of behavior and light-resetting, these mice exhibited consolidated locomotor activity and skipped the timed rest period (siesta) present in wild-type (Ube3a(m+/p+)) mice. Electroencephalographic analysis revealed that alterations in sleep regulation were responsible for these overt changes in activity. Specifically, Ube3a(m-/p+) mice have a markedly reduced capacity to accumulate sleep pressure, both during their active period and in response to forced sleep deprivation. Thus, our data indicate that the siesta is governed by sleep pressure, and that Ube3a is an important regulator of sleep homeostasis. These preclinical findings suggest that therapeutic interventions that target mechanisms of sleep homeostasis may improve sleep quality in individuals with AS. SIGNIFICANCE STATEMENT: Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have severe sleep dysfunction that affects their cognition and presents challenges to their caregivers. Unfortunately, current treatment strategies have limited efficacy due to a poor understanding of the mechanisms underlying sleep disruptions in AS. Here we demonstrate that abnormal sleep patterns arise from a deficit in accumulation of sleep drive, uncovering the Ube3a gene as a novel genetic regulator of sleep homeostasis. Our findings encourage a re-evaluation of current treatment strategies for sleep dysfunction in AS, and suggest that interventions that promote increased sleep drive may alleviate sleep disturbances in individuals with AS.


Assuntos
Ondas Encefálicas/fisiologia , Ritmo Circadiano/genética , Homeostase/genética , Transtornos do Sono-Vigília/genética , Ubiquitina-Proteína Ligases/metabolismo , Análise de Variância , Animais , Ondas Encefálicas/genética , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
BMC Biol ; 13: 43, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099272

RESUMO

BACKGROUND: Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. RESULTS: Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50-75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. CONCLUSIONS: Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior.


Assuntos
Encéfalo/fisiologia , Relógios Circadianos , Neurônios/citologia , Núcleo Supraquiasmático/citologia , Animais , Encéfalo/citologia , Ritmo Circadiano , Luz , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Fotoperíodo
16.
J Neurosci ; 34(46): 15192-9, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392488

RESUMO

The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∼24 h clock not only in the living animal, but also when isolated in culture. This "clock in a dish" can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)]i, and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms.


Assuntos
Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Expressão Gênica/fisiologia , Mamíferos/fisiologia , Neuroglia/fisiologia , Fotoperíodo , Tempo
17.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26108632

RESUMO

Daily rhythms in mammals are controlled by the circadian system, which is a collection of biological clocks regulated by a central pacemaker within the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Changes in SCN function have pronounced consequences for behaviour and physiology; however, few studies have examined whether individual differences in circadian behaviour reflect changes in SCN function. Here, PERIOD2::LUCIFERASE mice were exposed to a behavioural assay to characterize individual differences in baseline entrainment, rate of re-entrainment and free-running rhythms. SCN slices were then collected for ex vivo bioluminescence imaging to gain insight into how the properties of the SCN clock influence individual differences in behavioural rhythms. First, individual differences in the timing of locomotor activity rhythms were positively correlated with the timing of SCN rhythms. Second, slower adjustment during simulated jetlag was associated with a larger degree of phase heterogeneity among SCN neurons. Collectively, these findings highlight the role of the SCN network in determining individual differences in circadian behaviour. Furthermore, these results reveal novel ways that the network organization of the SCN influences plasticity at the behavioural level, and lend insight into potential interventions designed to modulate the rate of resynchronization during transmeridian travel and shift work.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos/fisiologia , Atividade Motora , Núcleo Supraquiasmático/metabolismo , Animais , Medições Luminescentes , Masculino , Fenótipo
18.
J Immunol ; 191(9): 4656-64, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24062487

RESUMO

The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.


Assuntos
Astrócitos/imunologia , Astrócitos/metabolismo , Relógios Circadianos/fisiologia , Núcleo Supraquiasmático/citologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Proteínas Circadianas Period/biossíntese , Proteínas Circadianas Period/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética
19.
N Engl J Med ; 364(26): 2483-95, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21615299

RESUMO

BACKGROUND: The role of fluid resuscitation in the treatment of children with shock and life-threatening infections who live in resource-limited settings is not established. METHODS: We randomly assigned children with severe febrile illness and impaired perfusion to receive boluses of 20 to 40 ml of 5% albumin solution (albumin-bolus group) or 0.9% saline solution (saline-bolus group) per kilogram of body weight or no bolus (control group) at the time of admission to a hospital in Uganda, Kenya, or Tanzania (stratum A); children with severe hypotension were randomly assigned to one of the bolus groups only (stratum B). All children received appropriate antimicrobial treatment, intravenous maintenance fluids, and supportive care, according to guidelines. Children with malnutrition or gastroenteritis were excluded. The primary end point was 48-hour mortality; secondary end points included pulmonary edema, increased intracranial pressure, and mortality or neurologic sequelae at 4 weeks. RESULTS: The data and safety monitoring committee recommended halting recruitment after 3141 of the projected 3600 children in stratum A were enrolled. Malaria status (57% overall) and clinical severity were similar across groups. The 48-hour mortality was 10.6% (111 of 1050 children), 10.5% (110 of 1047 children), and 7.3% (76 of 1044 children) in the albumin-bolus, saline-bolus, and control groups, respectively (relative risk for saline bolus vs. control, 1.44; 95% confidence interval [CI], 1.09 to 1.90; P=0.01; relative risk for albumin bolus vs. saline bolus, 1.01; 95% CI, 0.78 to 1.29; P=0.96; and relative risk for any bolus vs. control, 1.45; 95% CI, 1.13 to 1.86; P=0.003). The 4-week mortality was 12.2%, 12.0%, and 8.7% in the three groups, respectively (P=0.004 for the comparison of bolus with control). Neurologic sequelae occurred in 2.2%, 1.9%, and 2.0% of the children in the respective groups (P=0.92), and pulmonary edema or increased intracranial pressure occurred in 2.6%, 2.2%, and 1.7% (P=0.17), respectively. In stratum B, 69% of the children (9 of 13) in the albumin-bolus group and 56% (9 of 16) in the saline-bolus group died (P=0.45). The results were consistent across centers and across subgroups according to the severity of shock and status with respect to malaria, coma, sepsis, acidosis, and severe anemia. CONCLUSIONS: Fluid boluses significantly increased 48-hour mortality in critically ill children with impaired perfusion in these resource-limited settings in Africa. (Funded by the Medical Research Council, United Kingdom; FEAST Current Controlled Trials number, ISRCTN69856593.).


Assuntos
Albuminas/administração & dosagem , Hidratação/métodos , Infecções/terapia , Choque/terapia , Cloreto de Sódio/administração & dosagem , África Oriental , Criança , Pré-Escolar , Estado Terminal/mortalidade , Estado Terminal/terapia , Feminino , Febre , Hidratação/mortalidade , Humanos , Hipotensão/terapia , Lactente , Infecções/mortalidade , Análise de Intenção de Tratamento , Masculino , Ressuscitação/métodos , Risco , Choque/mortalidade
20.
J Biol Rhythms ; : 7487304241256004, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845380

RESUMO

Daily rhythms are programmed by a central circadian clock that is modulated by photoperiod. Here, we recorded locomotor activity rhythms in C57Bl/6 or mPer2Luc mice of both sexes held under different housing conditions. First, we confirm that the structure of locomotor activity rhythms differs between male and female mice in both genetic backgrounds. Male mice exhibit a nightly "siesta," whereas female mice fluctuate between nights with and without a nightly siesta, which corresponds with changes in locomotor activity levels, circadian period, and vaginal cytology. The nightly siesta is modulated by the presence of a running wheel in both sexes but is not required for the infradian patterning of locomotor rhythms in females. Finally, photoperiodic changes in locomotor rhythms differed by sex, and females displayed phase-jumping responses earlier than males under a parametric photoentrainment assay simulating increasing day length. Collectively, these results highlight that sex and sex hormones influence daily locomotor rhythms under a variety of different environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA