Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 52(3): 198-209, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123948

RESUMO

Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.


Assuntos
Indústria Farmacêutica , Sistemas Microfisiológicos , Animais , Humanos , Descoberta de Drogas
2.
Pharm Res ; 38(5): 843-850, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33723794

RESUMO

PURPOSE: To develop a novel, target agnostic liposome click membrane permeability assay (LCMPA) using liposome encapsulating copper free click reagent dibenzo cyclooctyne biotin (DBCO-Biotin) to conjugate azido modified peptides that may effectively translocate from extravesicular space into the liposome lumen. METHOD: DBCO-Biotin liposomes were prepared with egg phosphatidylcholine and cholesterol by lipid film rehydration, freeze/thaw followed by extrusion. Size of DBCO-Biotin liposomes were characterized with dynamic light scattering. RESULTS: The permeable peptides representing energy independent mechanism of permeability showed higher biotinylation in LCMPA. Individual peptide permeability results from LCMPA correlated well with shifts in potency in cellular versus biochemical assays (i.e., cellular/ biochemical ratio) demonstrating quantitative correlation to intracellular barrier in intact cells. CONCLUSION: The study provides a novel membrane permeability assay that has potential to evaluate energy independent transport of diverse peptides.


Assuntos
Bioensaio/métodos , Composição de Medicamentos/métodos , Peptídeos/farmacocinética , Alcinos/química , Compostos de Benzil/química , Biotina/química , Permeabilidade da Membrana Celular , Química Click , Células HCT116 , Humanos , Lipossomos , Peptídeos/administração & dosagem
3.
Drug Metab Dispos ; 48(11): 1147-1160, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943412

RESUMO

Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 µM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5µM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Descoberta de Drogas/métodos , Ácido Taurocólico/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Humanos , Concentração Inibidora 50 , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
5.
Drug Metab Dispos ; 46(2): 189-196, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29138286

RESUMO

Protein expression of major hepatobiliary drug transporters (NTCP, OATPs, OCT1, BSEP, BCRP, MATE1, MRPs, and P-gp) in cancerous (C, n = 8) and adjacent noncancerous (NC, n = 33) liver tissues obtained from patients with chronic hepatitis C with hepatocellular carcinoma (HCV-HCC) were quantified by LC-MS/MS proteomics. Herein, we compare our results with our previous data from noninfected, noncirrhotic (control, n = 36) and HCV-cirrhotic (n = 30) livers. The amount of membrane protein yielded from NC and C HCV-HCC tissues decreased (31%, 67%) relative to control livers. In comparison with control livers, with the exception of NTCP, MRP2, and MATE1, transporter expression decreased in NC (38%-76%) and C (56%-96%) HCV-HCC tissues. In NC HCV-HCC tissues, NTCP expression increased (113%), MATE1 expression decreased (58%), and MRP2 expression was unchanged relative to control livers. In C HCV-HCC tissues, NTCP and MRP2 expression decreased (63%, 56%) and MATE1 expression was unchanged relative to control livers. Compared with HCV-cirrhotic livers, aside from NTCP, OCT1, BSEP, and MRP2, transporter expression decreased in NC (41%-71%) and C (54%-89%) HCV-HCC tissues. In NC HCV-HCC tissues, NTCP and MRP2 expression increased (362%, 142%), whereas OCT1 and BSEP expression was unchanged. In C HCV-HCC tissues, OCT1 and BSEP expression decreased (90%, 80%) relative to HCV-cirrhotic livers, whereas NTCP and MRP2 expression was unchanged. Expression of OATP2B1, BSEP, MRP2, and MRP3 decreased (56%-72%) in C HCV-HCC tissues in comparison with matched NC tissues (n = 8), but the expression of other transporters was unchanged. These data will be helpful in the future to predict transporter-mediated hepatocellular drug concentrations in patients with HCV-HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatite C Crônica/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
6.
Drug Metab Dispos ; 44(9): 1498-509, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26825641

RESUMO

In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic.


Assuntos
Creatinina/sangue , Desenho de Fármacos , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Biomarcadores/metabolismo , Humanos , Testes de Função Renal , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
7.
Drug Metab Dispos ; 44(11): 1752-1758, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543206

RESUMO

Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance-associated protein (MRP)2, MRP3, MRP4, sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients.


Assuntos
Etanol/metabolismo , Hepatite C/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteômica/métodos
9.
Drug Metab Dispos ; 43(3): 367-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534768

RESUMO

We quantified, by liquid chromatography tandem mass spectrometry, transporter protein expression of BSEP, MATE1, MRP3, MRP4, NTCP, and OCT1 in our human liver bank (n = 55) and determined the relationship between protein expression and sex, age and genotype. These data complement our previous work in the same liver bank where we quantified the protein expression of OATPs, BCRP, MDR1, and MRP2. In addition, we quantified and compared the interspecies differences in expression of the hepatobiliary transporters, corresponding to the above human transporters, in liver tissue and hepatocytes of male beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Wistar rats. In all the species, the sinusoidal OATPs/Oatps were the most abundant hepatic transporters. However, there were notable interspecies differences in the relative abundance of the remaining transporters. For example, the next most abundant transporter in humans and monkeys was OCT1/Oct1, whereas it was Mrp2 and Ntcp in dogs/Wistar rats and Sprague-Dawley rats, respectively. In contrast, the protein expression of the efflux transporters BCRP/Bcrp, MDR1/Mdr1, MRP3/Mrp3, MRP4/Mrp4, and MATE1/Mate1 was much lower across all the species. For most transporters, the expression in the liver tissues was comparable to that in the unplated cryopreserved hepatocytes. These data on human liver transporter protein expression complete the picture of the expression of major human hepatobiliary transporters important in drug disposition and toxicity. In addition, the data on expression of the corresponding hepatobiliary transporters in preclinical species will be helpful in interpreting and extrapolating pharmacokinetic, pharmacological, and toxicological results from preclinical studies to humans.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma/metabolismo , Adolescente , Adulto , Idoso , Animais , Criança , Criopreservação/métodos , Cães , Feminino , Haplorrinos , Humanos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Adulto Jovem
10.
Drug Metab Dispos ; 43(2): 284-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25488931

RESUMO

To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Rim/metabolismo , Fígado/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Benzimidazóis/metabolismo , Transporte Biológico , Células CHO , Fracionamento Celular , Cromatografia Líquida de Alta Pressão , Células Clonais , Cricetulus , Cães , Avaliação Pré-Clínica de Medicamentos , Estradiol/metabolismo , Células HEK293 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
11.
Drug Metab Dispos ; 43(5): 774-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739975

RESUMO

Elevated levels of proinflammatory cytokines associated with infection and inflammation can modulate cytochrome P450 enzymes, leading to potential disease-drug interactions and altered small-molecule drug disposition. We established a human-derived hepatocyte-Kupffer cell (Hep:KC) coculture model to assess the indirect cytokine impact on hepatocytes through stimulation of KC-mediated cytokine release and compared this model with hepatocytes alone. Characterization of Hep:KC cocultures showed an inflammation response after treatment with lipopolysaccharide and interleukin (IL)-6 (indicated by secretion of various cytokines). Additionally, IL-6 exposure upregulated acute-phase proteins (C-reactive protein, alpha-1-acid glycoprotein, and serum amyloid A2) and downregulated CYP3A4. Compared with hepatocytes alone, Hep:KC cocultures showed enhanced IL-1ß-mediated effects but less impact from both IL-2 and IL-23. Hep:KC cocultures treated with IL-1ß exhibited a higher release of proinflammatory cytokines, an increased upregulation of acute-phase proteins, and a larger extent of metabolic enzyme and transporter suppression. IC50 values for IL-1ß-mediated CYP3A4 suppression were lower in Hep:KC cocultures (98.0-144 pg/ml) compared with hepatocytes alone (IC50 > 5000 pg/ml). Cytochrome suppression was preventable by blocking IL-1ß interaction with IL-1R1 using an antagonist cytokine or an anti-IL-1ß antibody. Unlike IL-1ß, IL-6-mediated effects were comparable between hepatocyte monocultures and Hep:KC cocultures. IL-2 and IL-23 caused a negligible inflammation response and a minimal inhibition of CYP3A4. In both hepatocyte monocultures and Hep:KC cocultures, IL-2RB and IL-23R were undetectable, whereas IL-6R and IL-1R1 levels were higher in Hep:KC cocultures. In summary, compared with hepatocyte monocultures, the Hep:KC coculture system is a more robust in vitro model for studying the impact of proinflammatory cytokines on metabolic enzymes.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Interleucinas/metabolismo , Células de Kupffer/metabolismo , Células 3T3 , Adulto , Animais , Transporte Biológico/fisiologia , Proteína C-Reativa/metabolismo , Linhagem Celular , Técnicas de Cocultura/métodos , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo/fisiologia , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Amiloide A Sérica/metabolismo , Regulação para Cima/fisiologia
12.
Drug Metab Dispos ; 43(6): 851-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25813937

RESUMO

Inhibition of hepatic transporters such as organic anion transporting polypeptides (OATPs) 1B can cause drug-drug interactions (DDIs). Determining the impact of perpetrator drugs on the plasma exposure of endogenous substrates for OATP1B could be valuable to assess the risk for DDIs early in drug development. As OATP1B orthologs are well conserved between human and monkey, we assessed in cynomolgus monkeys the endogenous OATP1B substrates that are potentially suitable to assess DDI risk in humans. The effect of rifampin (RIF), a potent inhibitor for OATP1B, on plasma exposure of endogenous substrates of hepatic transporters was measured. From the 18 biomarkers tested, RIF (18 mg/kg, oral) caused significant elevation of plasma unconjugated and conjugated bilirubin, which may be attributed to inhibition of cOATP1B1 and cOATP1B3 based on in vitro to in vivo extrapolation analysis. To further evaluate whether cynomolgus monkeys are a suitable translational model to study OATP1B-mediated DDIs, we determined the inhibitory effect of RIF on in vitro transport and pharmacokinetics of rosuvastatin (RSV) and atorvastatin (ATV). RIF strongly inhibited the uptake of RSV and ATV by cOATP1B1 and cOATP1B3 in vitro. In agreement with clinical observations, RIF (18 mg/kg, oral) significantly decreased plasma clearance and increased the area under the plasma concentration curve (AUC) of intravenously administered RSV by 2.8- and 2.7-fold, and increased the AUC and maximum plasma concentration of orally administered RSV by 6- and 10.3-fold, respectively. In contrast to clinical findings, RIF did not significantly increase plasma exposure of either intravenous or orally administered ATV, indicating species differences in the rate-limiting elimination pathways.


Assuntos
Indutores das Enzimas do Citocromo P-450/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Moduladores de Transporte de Membrana/efeitos adversos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Administração Oral , Animais , Bilirrubina/análogos & derivados , Bilirrubina/sangue , Bilirrubina/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Indutores das Enzimas do Citocromo P-450/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Células HEK293 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Injeções Intravenosas , Macaca fascicularis , Masculino , Moduladores de Transporte de Membrana/administração & dosagem , Taxa de Depuração Metabólica , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
13.
Drug Metab Dispos ; 42(1): 78-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24122874

RESUMO

Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Haplótipos/genética , Transportadores de Ânions Orgânicos/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Carbamatos/metabolismo , Criança , Pré-Escolar , Cromatografia Líquida/métodos , Feminino , Fluorbenzenos/metabolismo , Hepatócitos/metabolismo , Humanos , Individualidade , Lactente , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Piperidinas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Pirimidinas/metabolismo , Rosuvastatina Cálcica , Sulfonamidas/metabolismo , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
14.
Drug Metab Dispos ; 42(8): 1301-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24855184

RESUMO

Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography-tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Interações Medicamentosas/fisiologia , Fluorbenzenos/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Camundongos , Pravastatina/metabolismo , Pirimidinas/metabolismo , RNA Mensageiro/genética , Rosuvastatina Cálcica , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Sulfonamidas/metabolismo
15.
Br J Clin Pharmacol ; 78(3): 587-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24617605

RESUMO

AIMS: Rosuvastatin and pitavastatin have been proposed as probe substrates for the organic anion-transporting polypeptide (OATP) 1B, but clinical data on their relative sensitivity and selectivity to OATP1B inhibitors are lacking. A clinical study was therefore conducted to determine their relative suitability as OATP1B probes using single oral (PO) and intravenous (IV) doses of the OATP1B inhibitor rifampicin, accompanied by a comprehensive in vitro assessment of rifampicin inhibitory potential on statin transporters. METHODS: The clinical study comprised of two separate panels of eight healthy subjects. In each panel, subjects were randomized to receive a single oral dose of rosuvastatin (5 mg) or pitavastatin (1 mg) administered alone, concomitantly with rifampicin (600 mg) PO or IV. The in vitro transporter studies were performed using hepatocytes and recombinant expression systems. RESULTS: Rifampicin markedly increased exposures of both statins, with greater differential increases after PO vs. IV rifampicin only for rosuvastatin. The magnitudes of the increases in area under the plasma concentration-time curve were 5.7- and 7.6-fold for pitavastatin and 4.4- and 3.3-fold for rosuvastatin, after PO and IV rifampicin, respectively. In vitro studies showed that rifampicin was an inhibitor of OATP1B1 and OATP1B3, breast cancer resistance protein and multidrug resistance protein 2, but not of organic anion transporter 3. CONCLUSIONS: The results indicate that pitavastatin is a more sensitive and selective and thus preferred clinical OATP1B probe substrate than rosuvastatin, and that a single IV dose of rifampicin is a more selective OATP1B inhibitor than a PO dose.


Assuntos
Fluorbenzenos/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Pirimidinas/farmacocinética , Quinolinas/farmacocinética , Rifampina/farmacologia , Sulfonamidas/farmacocinética , Administração Intravenosa , Administração Oral , Adulto , Área Sob a Curva , Estudos Cross-Over , Interações Medicamentosas , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Rifampina/administração & dosagem , Rosuvastatina Cálcica , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Adulto Jovem
16.
CPT Pharmacometrics Syst Pharmacol ; 13(1): 118-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833845

RESUMO

Hepatic impairment (HI) moderately (<5-fold) affects the systemic exposure (i.e., area under the plasma concentration-time curve [AUC]) of drugs that are substrates of the hepatic sinusoidal organic anion transporting polypeptide (OATP) transporters and are excreted unchanged in the bile and/or urine. However, the effect of HI on their AUC is much greater (>10-fold) for drugs that are also substrates of cytochrome P450 (CYP) 3A enzymes. Using the extended clearance model, through simulations, we identified the ratio of sinusoidal efflux clearance (CL) over the sum of metabolic and biliary CLs as important in predicting the impact of HI on the AUC of dual OATP/CYP3A substrates. Because HI may reduce hepatic CYP3A-mediated CL to a greater extent than biliary efflux CL, the greater the contribution of the former versus the latter, the greater the impact of HI on drug AUC ratio (AUCRHI ). Using physiologically-based pharmacokinetic modeling and simulation, we predicted relatively well the AUCRHI of OATP substrates that are not significantly metabolized (pitavastatin, rosuvastatin, valsartan, and gadoxetic acid). However, there was a trend toward underprediction of the AUCRHI of the dual OATP/CYP3A4 substrates fimasartan and atorvastatin. These predictions improved when the sinusoidal efflux CL of these two drugs was increased in healthy volunteers (i.e., before incorporating the effect of HI), and by modifying the directionality of its modulation by HI (i.e., increase or decrease). To accurately predict the effect of HI on AUC of hepatobiliary cleared drugs it is important to accurately predict all hepatobiliary pathways, including sinusoidal efflux CL.


Assuntos
Citocromo P-450 CYP3A , Transportadores de Ânions Orgânicos , Humanos , Citocromo P-450 CYP3A/metabolismo , Fígado/metabolismo , Transporte Biológico , Rosuvastatina Cálcica , Transportadores de Ânions Orgânicos/metabolismo , Interações Medicamentosas
17.
Nat Rev Drug Discov ; 23(4): 255-280, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38267543

RESUMO

The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.


Assuntos
Proteínas de Membrana Transportadoras , Medicina de Precisão , Humanos , Interações Medicamentosas , Desenvolvimento de Medicamentos
18.
Drug Metab Dispos ; 41(3): 668-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23293300

RESUMO

The inhibitory effect of boceprevir (BOC), an inhibitor of hepatitis C virus nonstructural protein 3 protease was evaluated in vitro against a panel of drug-metabolizing enzymes and transporters. BOC, a known substrate for cytochrome P450 (P450) CYP3A and aldo-ketoreductases, was a reversible time-dependent inhibitor (k(inact) = 0.12 minute(-1), K(I) = 6.1 µM) of CYP3A4/5 but not an inhibitor of other major P450s, nor of UDP-glucuronosyltransferases 1A1 and 2B7. BOC showed weak to no inhibition of breast cancer resistance protein (BCRP), P-glycoprotein (Pgp), or multidrug resistance protein 2. It was a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B1 and 1B3, with an IC(50) of 18 and 4.9 µM, respectively. In human hepatocytes, BOC inhibited CYP3A-mediated metabolism of midazolam, OATP1B-mediated hepatic uptake of pitavastatin, and both the uptake and metabolism of atorvastatin. The inhibitory potency of BOC was lower than known inhibitors of CYP3A (ketoconazole), OATP1B (rifampin), or both (telaprevir). BOC was a substrate for Pgp and BCRP but not for OATP1B1, OATP1B3, OATP2B1, organic cation transporter, or sodium/taurocholate cotransporting peptide. Overall, our data suggest that BOC has the potential to cause pharmacokinetic interactions via inhibition of CYP3A and CYP3A/OATP1B interplay, with the interaction magnitude lower than those observed with known potent inhibitors. Conversely, pharmacokinetic interactions of BOC, either as a perpetrator or victim, via other major P450s and transporters tested are less likely to be of clinical significance. The results from clinical drug-drug interaction studies conducted thus far are generally supportive of these conclusions.


Assuntos
Antivirais/metabolismo , Inibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Fígado/enzimologia , Moduladores de Transporte de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Prolina/análogos & derivados , Animais , Antivirais/toxicidade , Biotransformação , Células CHO , Cricetinae , Cricetulus , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Cães , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/toxicidade , Enzimas/genética , Feminino , Glucuronosiltransferase/metabolismo , Humanos , Cinética , Células LLC-PK1 , Fígado/efeitos dos fármacos , Transportador 1 de Ânion Orgânico Específico do Fígado , Células Madin Darby de Rim Canino , Masculino , Moduladores de Transporte de Membrana/toxicidade , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Microssomos Hepáticos/enzimologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Oxirredutases/metabolismo , Prolina/metabolismo , Prolina/toxicidade , Proteínas Recombinantes/metabolismo , Suínos , Transfecção
19.
Drug Metab Dispos ; 41(9): 1598-609, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792813

RESUMO

Drug-drug interactions (DDIs) between therapeutic proteins (TPs) and small-molecule drugs have recently drawn the attention of regulatory agencies, the pharmaceutical industry, and academia. TP-DDIs are mainly caused by proinflammatory cytokine or cytokine modulator-mediated effects on the expression of cytochrome P450 enzymes. To build consensus among industry and regulatory agencies on expectations and challenges in this area, a working group was initiated to review the preclinical state of the art. This white paper represents the observations and recommendations of the working group on the value of in vitro human hepatocyte studies for the prediction of clinical TP-DDI. The white paper was developed following a "Workshop on Recent Advances in the Investigation of Therapeutic Protein Drug-Drug Interactions: Preclinical and Clinical Approaches" held at the Food and Drug Administration White Oak Conference Center on June 4 and 5, 2012. Results of a workshop poll, cross-laboratory data comparisons, and the overall recommendations of the in vitro working group are presented herein. The working group observed that evaluation of TP-DDI for anticytokine monoclonal antibodies is currently best accomplished with a clinical study in patients with inflammatory disease. Treatment-induced changes in appropriate biomarkers in phase 2 and 3 studies may indicate the potential for a clinically measurable treatment effect on cytochrome P450 enzymes. Cytokine-mediated DDIs observed with anti-inflammatory TPs cannot currently be predicted using in vitro data. Future success in predicting clinical TP-DDIs will require an understanding of disease biology, physiologically relevant in vitro systems, and more examples of well conducted clinical TP-DDI trials.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Proteínas/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Proteínas/farmacologia , Estados Unidos , United States Food and Drug Administration
20.
CPT Pharmacometrics Syst Pharmacol ; 12(2): 261-273, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36540952

RESUMO

Physiologically based pharmacokinetic models, populated with drug-metabolizing enzyme and transporter (DMET) abundance, can be used to predict the impact of hepatic impairment (HI) on the pharmacokinetics (PK) of drugs. To increase confidence in the predictive power of such models, they must be validated by comparing the predicted and observed PK of drugs in HI obtained by phenotyping (or probe drug) studies. Therefore, we first predicted the effect of all stages of HI (mild to severe) on the PK of drugs primarily metabolized by cytochrome P450 (CYP) 3A enzymes using the default HI module of Simcyp Version 21, populated with hepatic and intestinal CYP3A abundance data. Then, we validated the predictions using CYP3A probe drug phenotyping studies conducted in HI. Seven CYP3A substrates, metabolized primarily via CYP3A (fraction metabolized, 0.7-0.95), with low to high hepatic availability, were studied. For all stages of HI, the predicted PK parameters of drugs were within twofold of the observed data. This successful validation increases confidence in using the DMET abundance data in HI to predict the changes in the PK of drugs cleared by DMET for which phenotyping studies in HI are not available or cannot be conducted. In addition, using CYP3A drugs as an example, through simulations, we identified the salient PK factors that drive the major changes in exposure (area under the plasma concentration-time profile curve) to drugs in HI. This theoretical framework can be applied to any drug and DMET to quickly determine the likely magnitude of change in drug PK due to HI.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Simulação por Computador , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA