Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(2): 025002, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296928

RESUMO

The key result of the present work is the theoretical prediction and observation of the formation of a new type of transport barrier in fusion plasmas, called F-ATB (fast ion-induced anomalous transport barrier). As demonstrated through state-of-the-art global electrostatic and electromagnetic simulations, the F-ATB is characterized by a full suppression of the turbulent transport-caused by strongly sheared, axisymmetric E×B flows-and an increase of the neoclassical counterpart, albeit keeping the overall fluxes at significantly reduced levels. The trigger mechanism is shown to be a mainly electrostatic resonant interaction between suprathermal particles, generated via ion-cyclotron-resonance heating, and plasma microturbulence. These findings are obtained by realistic simulations of the ASDEX Upgrade discharge No. 36637-properly designed to maximized the beneficial role of the wave-particle resonance interaction-which exhibits the expected properties of improved confinement produced by energetic particles.

2.
Phys Rev Lett ; 107(21): 215003, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181890

RESUMO

Observations in the ASDEX Upgrade tokamak show a correlation between the gradient of the intrinsic toroidal rotation profile and the logarithmic gradient of the electron density profile. The intrinsic toroidal rotation in the center of the plasma reverses from co- to countercurrent when the logarithmic density gradients are large, and the turbulence is either dominated by trapped electron modes or is at the transition between ion temperature gradient and trapped electron modes. A study based on local gyrokinetic calculations suggests that the dominant trend in the observations can be explained by the combination of residual stresses produced by E × B and profile shearing mechanisms.

3.
Phys Rev Lett ; 94(10): 105002, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15783491

RESUMO

Improved electron energy confinement in tokamak plasmas, related to internal transport barriers, has been linked to nonmonotonic current density profiles. This is difficult to prove experimentally since usually the current profiles evolve continuously and current injection generally requires significant input power. New experiments are presented, in which the inductive current is used to generate positive and negative current density perturbations in the plasma center, with negligible input power. These results demonstrate unambiguously for the first time that the electron confinement can be modified significantly solely by perturbing the current density profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA