Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424485

RESUMO

BACKGROUND: Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state. RESULTS: We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs. CONCLUSIONS: We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.


Assuntos
Natimorto , Gravidez , Humanos , Feminino , Animais , Ovinos/genética , Haplótipos , Animais Recém-Nascidos , Natimorto/genética , Natimorto/veterinária , Homozigoto , Genótipo
2.
Anim Genet ; 55(4): 644-657, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922751

RESUMO

We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.


Assuntos
Carneiro Doméstico , Animais , Feminino , Carneiro Doméstico/genética , Gravidez , Duplicação Gênica , Inseminação Artificial/veterinária , Homozigoto , Mutação da Fase de Leitura , Aborto Animal/genética , Haplótipos , Ovinos/genética
3.
Anim Biotechnol ; 34(8): 3495-3506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36633454

RESUMO

This study aimed to compare growth performance between Moghani sheep and crossbred lambs resulting from crossbreeding between Moghani pure breed ewes and the lines of rams e.g., Texel Tamlet, Texel Dalzell, Booroola Merino, and Booroola Romney. The first visible phenotypic characteristic was the presence of lean tail in all F1 crossbred lambs, whereas Moghani pure sheep is a well-known large fat-tailed breed. Moreover, the first generation of backcross (BC1) lambs from mating four types of F1 crossbred rams with Moghani pure ewes revealed lean-tailed to short fat-tailed. Comparative results showed that the F1 crossbred lambs had significantly (p < 0.0001) greater birth weight (BW) than the Moghani pure breed lambs. Despite no significant differences observed between Moghani pure breed sheep and its F1 crossbred lambs for body weight at pre-weaning, but F1 crossbred lambs achieved significantly (p < 0.0001) greater body weight after weaning compared to Moghani sheep. The growth performance of BC1 lambs was outperformed than F1 crossbred and Moghani sheep. These results encourage the continuation of the Moghani sheep crossbreeding programs to improve overall lamb growth, particularly post-weaning and to benefit from a better reproductive efficiency by elimination or reduction of the fat tail.


Assuntos
Reprodução , Carneiro Doméstico , Ovinos/genética , Animais , Feminino , Masculino , Reprodução/genética , Carneiro Doméstico/genética , Hibridização Genética , Estações do Ano , Peso Corporal/genética , Cruzamentos Genéticos
4.
J Cell Physiol ; 237(5): 2528-2538, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315069

RESUMO

Increasing the efficiency of farm animal reproduction is necessary to reduce the environmental impact of food production systems. One approach is to increase the number of healthy eggs (oocytes) produced per female for fertilization, thus it is important to understand factors that decrease oocyte health. One paracrine factor that decreases ovarian follicle growth is fibroblast growth factor 18 (FGF18) secreted by cells in the theca layer of the ovarian follicle, however the factors that regulate FGF18 secretion are unknown. In this study we hypothesized that FGF18 secretion is controled by intrafollicular factors and is linked to fertility, which we tested by using cell culture and sheep genetic models in vivo. Separation of theca cell populations revealed that FGF18 messenger RNA (mRNA) is located mainly in thecal endothelial rather than endocrine cells, and immunohistochemistry localized FGF18 protein to microvessels in the theca layer in situ. Culture of ovine theca-derived endothelial cells was used to demonstrate stimulation of FGF18 mRNA and protein abundance by bone morphogenetic protein 4 (BMP4), a growth factor derived from theca endocrine cells. Taking advantage of a sheep genetic model, we demonstrate reduced ovarian and peripheral FGF18 concentrations in the hyperprolific Booroola ewe harboring the FecBB mutation in BMPR1B. These data suggest a novel control of fertility by follicular endothelial cells, in which theca endocrine cells secrete BMP4 that stimulates the secretion of FGF18 from thecal endothelial cells, which in turn diffuses into the granulosa cell layer and promotes apoptosis.


Assuntos
Células Endoteliais , Células Tecais , Animais , Células Endoteliais/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Células da Granulosa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos , Células Tecais/metabolismo
5.
Hum Reprod ; 37(6): 1207-1228, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35459945

RESUMO

STUDY QUESTION: What biological processes are linked to the signaling of the energy sensor 5'-AMP-activated protein kinase (AMPK) in mouse and human granulosa cells (GCs)? SUMMARY ANSWER: The lack of α1AMPK in GCs impacted cell cycle, adhesion, lipid metabolism and induced a hyperandrogenic response. WHAT IS KNOWN ALREADY: AMPK is expressed in the ovarian follicle, and its activation by pharmacological medications, such as metformin, inhibits the production of steroids. Polycystic ovary syndrome (PCOS) is responsible for infertility in approximately 5-20% of women of childbearing age and possible treatments include reducing body weight, improving lifestyle and the administration of a combination of drugs to improve insulin resistance, such as metformin. STUDY DESIGN, SIZE, DURATION: AMPK signaling was evaluated by analyzing differential gene expression in immortalized human granulosa cells (KGNs) with and without silencing α1AMPK using CRISPR/Cas9. In vivo studies included the use of a α1AMPK knock-out mouse model to evaluate the role of α1AMPK in folliculogenesis and fertility. Expression of α1AMPK was evaluated in primary human granulosa-luteal cells retrieved from women undergoing IVF with and without a lean PCOS phenotype (i.e. BMI: 18-25 kg/m2). PARTICIPANTS/MATERIALS, SETTING, METHODS: α1AMPK was disrupted in KGN cells and a transgenic mouse model. Cell viability, proliferation and metabolism were evaluated. Androgen production was evaluated by analyzing protein levels of relevant enzymes in the steroid pathway by western blots, and steroid levels obtained from in vitro and in vivo models by mass spectrometry. Differential gene expression in human GC was obtained by RNA sequencing. Analysis of in vivo murine folliculogenesis was performed by histology and immunochemistry, including evaluation of the anti-Müllerian hormone (AMH) marker. The α1AMPK gene expression was evaluated by quantitative RT-PCR in primary GCs obtained from women with the lean PCOS phenotype (n = 8) and without PCOS (n = 9). MAIN RESULTS AND THE ROLE OF CHANCE: Silencing of α1AMPK in KGN increased cell proliferation (P < 0.05 versus control, n = 4), promoted the use of fatty acids over glucose, and induced a hyperandrogenic response resulting from upregulation of two of the enzymes involved in steroid production, namely 3ß-hydroxysteroid dehydrogenase (3ßHSD) and P450 side-chain cleavage enzyme (P450scc) (P < 0.05, n = 3). Female mice deficient in α1AMPK had a 30% decrease in their ovulation rate (P < 0.05, n = 7) and litter size, a hyperandrogenic response (P < 0.05, n = 7) with higher levels of 3ßHSD and p450scc levels in the ovaries, and an increase in the population of antral follicles (P < 0.01, n = 10) compared to controls. Primary GCs from lean women with PCOS had lower α1AMPK mRNA expression levels than the control group (P < 0.05, n = 8-9). LARGE SCALE DATA: The FastQ files and metadata were submitted to the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB46048. LIMITATIONS, REASONS FOR CAUTION: The human KGN is a not fully differentiated, transformed cell line. As such, to confirm the role of AMPK in GC and the PCOS phenotype, this model was compared to two others: an α1AMPK transgenic mouse model and primary differentiated granulosa-lutein cells from non-obese women undergoing IVF (with and without PCOS). A clear limitation is the small number of patients with PCOS utilized in this study and that the collection of human GCs was performed after hormonal stimulation. WIDER IMPLICATIONS OF THE FINDINGS: Our results reveal that AMPK is directly involved in steroid production in human GCs. In addition, AMPK signaling was associated with other processes frequently reported as dysfunctional in PCOS models, such as cell adhesion, lipid metabolism and inflammation. Silencing of α1AMPK in KGN promoted folliculogenesis, with increases in AMH. Evaluating the expression of the α1AMPK subunit could be considered as a marker of interest in infertility cases related to hormonal imbalances and metabolic disorders, including PCOS. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by the Institut National de la Recherche Agronomique (INRA) and the national programme « FERTiNERGY ¼ funded by the French National Research Agency (ANR). The authors report no intellectual or financial conflicts of interest related to this work. R.K. is identified as personnel of the International Agency for Research on Cancer/World Health Organization. R.K. alone is responsible for the views expressed in this article and she does not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fenômenos Biológicos , Hiperandrogenismo , Infertilidade Feminina , Metformina , Síndrome do Ovário Policístico , Proteínas Quinases Ativadas por AMP , Animais , Hormônio Antimülleriano/metabolismo , Feminino , Fertilidade , Humanos , Hiperandrogenismo/complicações , Metformina/farmacologia , Camundongos , Síndrome do Ovário Policístico/metabolismo
6.
Genet Sel Evol ; 53(1): 41, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932977

RESUMO

BACKGROUND: Homozygous recessive deleterious mutations can cause embryo/fetal or neonatal lethality, or genetic defects that affect female fertility and animal welfare. In livestock populations under selection, the frequency of such lethal mutations may increase due to inbreeding, genetic drift, and/or the positive pleiotropic effects of heterozygous carriers on selected traits. RESULTS: By scanning the genome of 19,102 Lacaune sheep using 50 k single nucleotide polymorphism (SNP) phased genotypes and pedigree data, we identified 11 Lacaune deficient homozygous haplotypes (LDHH1 to LDHH11) showing a highly significant deficit of homozygous animals ranging from 79 to 100%. These haplotypes located on chromosomes 3, 4, 13, 17 and 18, spanned regions from 1.2 to 3.0 Mb long with a frequency of heterozygous carriers between 3.7 and 12.1%. When we compared at-risk matings (between carrier rams and daughters of carrier rams) and safe matings, seven of the 11 haplotypes were associated with a significant alteration of two fertility traits, a reduced success of artificial insemination (LDHH1, 2, 8 and 9), and/or an increased stillbirth rate (LDHH3, 6, 8, 9, and 10). The 11 haplotypes were also tested for a putative selective advantage of heterozygous carrier rams based on their daughter yield deviation for six dairy traits (milk, fat and protein yields, fat and protein contents and lactation somatic cell score). LDHH1, 3, 4, 5, 7, 9 and 11 were associated with positive effects on at least one selected dairy trait, in particular milk yield. For each haplotype, the most probable candidate genes were identified based on their roles in lethality of mouse knock-out models and in mammalian genetic disorders. CONCLUSIONS: Based on a reverse genetic strategy, we identified at least 11 haplotypes with homozygous deficiency segregating in French Lacaune dairy sheep. This strategy represents a first tool to limit at-risk matings in the Lacaune dairy selection scheme. We assume that most of the identified LDHH are in strong linkage disequilibrium with a recessive lethal mutation that affects embryonic or juvenile survival in sheep but is yet to be identified.


Assuntos
Fertilidade/genética , Genes Letais , Haplótipos , Ovinos/genética , Animais , Genes Recessivos , Homozigoto , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Ovinos/fisiologia
7.
Reprod Fertil Dev ; 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210385

RESUMO

This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.

8.
Cell Mol Life Sci ; 77(6): 1177-1196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31327046

RESUMO

In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.


Assuntos
Síndrome do Ovário Policístico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Testosterona/metabolismo , Células Tecais/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Síndrome do Ovário Policístico/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ovinos , Células Tecais/citologia , Células Tecais/ultraestrutura
9.
BMC Biol ; 17(1): 108, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31884969

RESUMO

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.


Assuntos
Animais Domésticos/genética , Cromatina/genética , Anotação de Sequência Molecular , Transcriptoma , Animais , Bovinos , Galinhas , Cabras , Filogenia , Sus scrofa
10.
Reprod Domest Anim ; 54(3): 531-537, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30561778

RESUMO

Mutations in the FecL locus are associated with large variation in ovulation rate and litter size in the French Lacaune sheep breed. It has been shown that the B4GALNT2 gene within the FecL locus is most likely responsible for the high fecundity in the French breed. In this study, we have highlighted the segregation of the FecLL mutation within the B4GALNT2 gene in North African sheep breeds and notably in the highly prolific D'man breed. Genotyping of a sample of 183 Tunisian D'man individuals revealed a high frequency (0.65) of the prolific allele FecLL which was attributed to the adoption of a decades-old breeding strategy based on the selection of ewe lambs born from large litter size. Homozygous LL ewes showed a significantly increased litter size compared to heterozygous and non-carrier ewes (FecLL /FecLL  = 2.47 ± 0.09 vs. FecLL /FecL+  = 2.23 ± 0.09, p < 0.05 and FecL+ /FecL+  = 1.93 ± 0.18, p < 0.01). The presence of the FecLL polymorphism in both D'man and Lacaune breeds argues for an ancestral origin of this mutation and brings an answer to the old question of the genetic determinism of the extreme prolificacy of the D'man ewes. The results of this study can help to establish planned genotype-based mating allowing both higher profit for the breeders and an optimal management of the FecLL mutation in D'man sheep populations.


Assuntos
N-Acetilgalactosaminiltransferases/genética , Ovinos/genética , Alelos , Animais , Cruzamento , Feminino , Fertilidade/genética , Frequência do Gene , Genética Populacional , Técnicas de Genotipagem/veterinária , Tamanho da Ninhada de Vivíparos/genética , Masculino , Mutação , Gravidez
11.
Mol Biol Evol ; 34(7): 1722-1729, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379502

RESUMO

The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.


Assuntos
Carneiro Doméstico/genética , Ovinos/genética , Animais , Evolução Biológica , Proteínas de Transporte/genética , DNA Antigo , Variação Genética/genética , Genoma , Estudo de Associação Genômica Ampla/métodos , Mutação , Fenótipo , Fatores de Transcrição/genética ,
12.
Physiol Genomics ; 49(2): 67-80, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940565

RESUMO

Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.


Assuntos
Atresia Folicular/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Folículo Ovariano/metabolismo , Sus scrofa/genética , Animais , Apoptose/genética , Biomarcadores/metabolismo , Análise por Conglomerados , Regulação para Baixo/genética , Feminino , Ontologia Genética , Transdução de Sinais/genética , Regulação para Cima/genética
13.
Reproduction ; 153(4): 395-404, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069901

RESUMO

Polymorphisms in the gene encoding bone morphogenetic protein 15 (BMP15) have been associated with multiple ovulations in sheep. As BMP15 regulates inhibin expression in rodents, we assumed that the ovarian inhibin/activin system could mediate part of the effect of BMP15 mutations in the regulation of ovulation rate in sheep. To answer this question, we have studied the effects of two natural loss-of-function mutations of BMP15 on the expression of components of this system. The FecXR and the FecXGr mutations, when present respectively in Rasa Aragonesa ewes at the heterozygous state and in Grivette ewes at the homozygous state, were associated with a twofold increase in ovulation rate. There were only small differences between mutant and wild-type ewes for mRNA expression of INHA, INHBA, ACVR1B, ACVR2A, FST or TGFBR3 in granulosa cells and inhibin A or activin A concentrations in follicular fluid. Moreover, the effects of mutations differed between breeds. In cultures of granulosa cells from wild-type ewes, BMP15, acting alone or in synergy with GDF9, stimulated INHA, INHBA and FST expression, but inhibited the expression of TGFBR3 Activin A did not affect INHBA expression, but inhibited the expression of ACVR2A also. The complexity of the inhibin/activin system, including positive and antagonistic elements, and the differential regulation of these elements by BMP15 and activin can explain that the effects of BMP15 mutations differ when present in different genetic backgrounds. In conclusion, the ovarian inhibin/activin system is unlikely to participate in the increase of ovulation rate associated with BMP15 mutations in sheep.


Assuntos
Ativinas/genética , Proteína Morfogenética Óssea 15/genética , Regulação da Expressão Gênica , Inibinas/genética , Mutação , Folículo Ovariano/fisiologia , Ovulação/genética , Animais , Células Cultivadas , Feminino , Genótipo , Células da Granulosa/citologia , Células da Granulosa/fisiologia , Fator 9 de Diferenciação de Crescimento/genética , Folículo Ovariano/citologia , Ovinos
14.
BMC Genet ; 18(1): 43, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506298

RESUMO

BACKGROUND: Naturally occurring mutations in growth and differentiation factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15) genes are associated with increased ovulation rate (OR) and litter size (LS) but also sterility. Observing the Tunisian Barbarine ewes of the "W" flock selected for improved prolificacy, we found prolific and infertile ewes with streaky ovaries. Blood genomic DNA was extracted from a subset of low-ovulating, prolific and infertile ewes of the "W" flock, and the entire coding sequences of GDF9 and BMP15 were sequenced. RESULTS: We evidenced a novel polymorphism in the exon 1 of the BMP15 gene associated with increased prolificacy and sterility. This novel mutation called FecX Bar is a composite polymorphism associating a single nucleotide substitution (c.301G > T), a 3 bp deletion (c.302_304delCTA) and a C insertion (c.310insC) in the ovine BMP15 cDNA leading to a frame shift at protein position 101. Calculated in the "W" flock, the FecX Bar allele increased OR by 0.7 ova and LS by 0.3 lambs (p = 0.08). As for already identified mutations, homozygous females carrying FecX Bar exhibited streaky ovaries with a blockade at the primary stage of folliculogenesis as shown by histochemistry. CONCLUSIONS: Our investigation demonstrates a new mutation in the BMP15 gene providing a valuable genetic tool to control fecundity in Tunisian Barbarine, usable for diffusion program into conventional flocks looking for prolificacy improvement.


Assuntos
Proteína Morfogenética Óssea 15/genética , Infertilidade Feminina/genética , Mutação , Ovinos/genética , Animais , Feminino , Fator 9 de Diferenciação de Crescimento/genética , Ovulação , Polimorfismo Genético , Gravidez , Análise de Sequência de DNA
16.
PLoS Genet ; 9(4): e1003482, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637641

RESUMO

Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E(-05) and 1E(-07). The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecX(Gr) and FecX(O) were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (p FecX (Gr) = 5.98E(-06) and p FecX(O) = 2.55E(-08)). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecX(Gr)/FecX(Gr), LS = 2.50 ± 0.65 versus FecX(+)/FecX(Gr), LS = 1.93 ± 0.42, p<1E(-03) and FecX(O)/FecX(O), OR = 3.28 ± 0.85 versus FecX(+)/FecX(O), OR = 2.02 ± 0.47, p<1E(-03)). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecX(Gr)/FecX(Gr) Grivette and homozygous FecX(O)/FecX(O) Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women's fertility disorders.


Assuntos
Proteína Morfogenética Óssea 15/genética , Ovulação/genética , Animais , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Tamanho da Ninhada de Vivíparos/genética , Mutação , Fenótipo , Ovinos
17.
PLoS Genet ; 9(9): e1003809, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086150

RESUMO

Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecL(L) . Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecL(L) carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecL(L) . B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecL(L) /FecL(L) ewes at mRNA and protein levels. In FecL(L) carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis.


Assuntos
Regulação da Expressão Gênica , Infertilidade Feminina/genética , N-Acetilgalactosaminiltransferases/biossíntese , Carneiro Doméstico/genética , Animais , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Glicosilação , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Infertilidade Feminina/patologia , Hormônio Luteinizante/metabolismo , N-Acetilgalactosaminiltransferases/genética , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovulação/genética , Ovulação/metabolismo , RNA Mensageiro/genética , Carneiro Doméstico/fisiologia
18.
Biol Reprod ; 90(4): 85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24599291

RESUMO

The growing follicles develop from a reserve of primordial follicles constituted early in life. From this pre-established reserve, a second ovarian reserve is formed, which consists of gonadotropin-responsive small antral growing follicles and is a dynamic reserve for ovulation. Its size, evaluated by direct antral follicular count or endocrine markers, determines the success of assisted reproductive technologies in humans and embryo production biotechnologies in animals. Strong evidence indicates that these two reserves are functionally related. The size of both reserves appears to be highly variable between individuals of similar age, but the equilibrium size of the dynamic reserve in adults seems to be specific to each individual. The dynamics of both follicular reserves appears to result from the fine tuning of regulations involving two main pathways, the phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDPK1)/v-akt murine thymoma viral oncogene homolog 1 (AKT1) and the bone morphogenetic protein (BMP)/anti-Müllerian hormone (AMH)/SMAD signaling pathways. Mutations in genes encoding the ligands, receptors, or signaling effectors of these pathways can accelerate or modulate the exhaustion rate of the ovarian reserves, causing premature ovarian insufficiency (POI) or increase in reproductive longevity, respectively. With female aging, the decline in primordial follicle numbers parallels the decrease in the size of the dynamic reserve of small antral follicles and the deterioration of oocyte quality. Recent progress in our knowledge of signaling pathways and their environmental and hormonal control during adult and fetal life opens new perspectives to improve the management of the ovarian reserves.


Assuntos
Envelhecimento/fisiologia , Hormônio Antimülleriano/fisiologia , Oócitos/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/fisiologia , Técnicas de Reprodução Assistida , Animais , Feminino , Humanos , Oócitos/citologia
19.
Biol Reprod ; 91(4): 83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100713

RESUMO

Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are TGFbeta-like oocyte-derived growth factors involved in ovarian folliculogenesis as critical regulators of many granulosa cell processes and ovulation rate. Ovarian phenotypic effect caused by alterations in BMP15 and GDF9 genes appears to differ between species and may be relevant to their mono- or polyovulating status. Through phylogenetic analysis we recently showed that these two paralogous genes are strongly divergent and in rapid evolution as compared to other members of the TGFbeta superfamily. Here, we evaluate the amino acid substitution rates of a set of proteins implicated in the ovarian function, including BMP15 and GDF9, with special attention to the mono- or polyovulating status of the species. Among a panel of mono- and polyovulating mammals, we demonstrate a better conservation of some areas in BMP15 and GDF9 within mono-ovulating species. Homology modeling of BMP15 and GDF9 homodimer and heterodimer 3-D structures was suggestive that these areas may be involved in dimer formation and stability. A phylogenetic study of BMP15/GDF9-related proteins reveals that these two genes diverged from the same ancestral gene along with BMP3 and GDF10, two other paralogous genes. A substitution rate analysis based on this phylogenetic tree leads to the hypothesis of an acquisition of BMP15/GDF9-specific functions in ovarian folliculogenesis in mammals. We propose that high variations observed in specific areas of BMP15 and GDF9 in polyovulating species change the equilibrium between homodimers and heterodimers, modifying the biological activity and thus allowing polyovulation to occur.


Assuntos
Evolução Biológica , Proteína Morfogenética Óssea 15/metabolismo , Fator 9 de Diferenciação de Crescimento/metabolismo , Ovulação/fisiologia , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 15/genética , Feminino , Regulação da Expressão Gênica , Variação Genética , Fator 9 de Diferenciação de Crescimento/genética , Filogenia , Especificidade da Espécie
20.
PLoS One ; 19(4): e0301629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573987

RESUMO

In our ongoing project, which focuses on the introgression of Booroola/FecB gene and the myostatin (MSTN) gene into purebred Moghani sheep, we assessed the performance of second-generation Moghani crossbreds such as second crossbreds (F2) and initial backcross generation (BC1). These crossbreds were generated through different mating systems, including in-breeding, outcrossing, first paternal backcrossing (PBC1), and first maternal backcrossing (MBC1). Notably, F2 strains exhibited lean tail, woolly fleece and a higher percentage of white coat color compared to BC1. The impact of mating systems and birth types on pre-weaning survival rates was found to be statistically significant (P < 0.0001), with singleton offspring resulting from paternal backcross showing a particularly substantial effect. The F2 crossbred lambs carrying the Booroola gene did not show a statistically significant difference in survivability compared to those carrying the MSTN gene, implying the Booroola prolificacy gene had no significant impact on survival outcomes. However, the occurrence of multiple births had a significant negative impact on lamb survival (P < 0.0001). The PBC1 sheep strains, specifically Texel Tamlet ram strains carrying the MSTN mutation, exhibited superior growth rates compared to others (P < 0.05). Interestingly, the MSTN mutation in the homozygous variant genotype significantly impacts growth rate before weaning compared to other genotypes and pure Moghani sheep (P < 0.05). In conclusion, this study objectively underscores the pivotal role of genetic factors, specifically through strategic mating systems like paternal backcrossing, in enhancing desired traits and growth rates in Moghani sheep, thereby contributing valuable insights to the field of sheep breeding programs.


Assuntos
Reprodução , Carneiro Doméstico , Gravidez , Feminino , Ovinos/genética , Animais , Masculino , Reprodução/genética , Carneiro Doméstico/genética , Genótipo , Mutação , Gravidez Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA