Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 545(7655): 452-456, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514453

RESUMO

Tumour-specific CD8 T cells in solid tumours are dysfunctional, allowing tumours to progress. The epigenetic regulation of T cell dysfunction and therapeutic reprogrammability (for example, to immune checkpoint blockade) is not well understood. Here we show that T cells in mouse tumours differentiate through two discrete chromatin states: a plastic dysfunctional state from which T cells can be rescued, and a fixed dysfunctional state in which the cells are resistant to reprogramming. We identified surface markers associated with each chromatin state that distinguished reprogrammable from non-reprogrammable PD1hi dysfunctional T cells within heterogeneous T cell populations from tumours in mice; these surface markers were also expressed on human PD1hi tumour-infiltrating CD8 T cells. Our study has important implications for cancer immunotherapy as we define key transcription factors and epigenetic programs underlying T cell dysfunction and surface markers that predict therapeutic reprogrammability.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cromatina/genética , Cromatina/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos , Neoplasias/metabolismo , Neoplasias/terapia , Fatores de Transcrição/metabolismo
2.
Genes Chromosomes Cancer ; 55(4): 311-321, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865277

RESUMO

Locally advanced rectal cancer (LARC) is treated with chemoradiation prior to surgical excision, leaving residual tumors altered or completely absent. Integrating layers of genomic profiling might identify regulatory pathways relevant to rectal tumorigenesis and inform therapeutic decisions and further research. We utilized formalin-fixed, paraffin-embedded pre-treatment LARC biopsies (n=138) and compared copy number, mRNA, and miRNA expression with matched normal rectal mucosa. An integrative model was used to predict regulatory interactions to explain gene expression changes. These predictions were evaluated in vitro using multiple colorectal cancer cell lines. The Cancer Genome Atlas (TCGA) was also used as an external cohort to validate our genomic profiling and predictions. We found differentially expressed mRNAs and miRNAs that characterize LARC. Our integrative model predicted the upregulation of miR-92a, miR-182, and miR-221 expression to be associated with downregulation of their target genes after adjusting for the effect of copy number alterations. Cell line studies using miR-92a mimics and inhibitors demonstrate that miR-92a expression regulates IQGAP2 expression. We show that endogenous miR-92a expression is inversely associated with endogenous KLF4 expression in multiple cell lines, and that this relationship is also present in rectal cancers of TCGA. Our integrative model predicted regulators of gene expression change in LARC using pre-treatment FFPE tissues. Our methodology implicated multiple regulatory interactions, some of which are corroborated by independent lines of study, while others indicate new opportunities for investigation.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Neoplasias Retais/genética , Proteínas Ativadoras de ras GTPase/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Reto/metabolismo
3.
JHEP Rep ; 6(4): 101021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617599

RESUMO

Background & aims: This phase Ib/II trial evaluated the safety and efficacy of capmatinib in combination with spartalizumab or spartalizumab alone in patients with advanced hepatocellular carcinoma (HCC). Methods: Eligible patients who had progressed or were intolerant to sorafenib received escalating doses of capmatinib 200 mg, 300 mg, and 400 mg twice a day (bid) plus spartalizumab 300 mg every 3 weeks (q3w) in the phase Ib study. Once the recommended phase II dose (RP2D) was determined, the phase II study commenced with randomised 1:1 treatment with either capmatinib + spartalizumab (n = 32) or spartalizumab alone (n = 30). Primary endpoints were safety and tolerability (phase Ib) and investigator-assessed overall response rate per RECIST v1.1 for combination vs. single-agent arms using a Bayesian logistic regression model (phase II). Results: In phase Ib, the RP2D for capmatinib in combination with spartalizumab was determined to be 400 mg bid. Dose-limiting toxicity consisting of grade 3 diarrhoea was reported in one patient at the capmatinib 400 mg bid + spartalizumab 300 mg q3w dose level. The primary endpoint in the phase II study was not met. The observed overall response rate in the capmatinib + spartalizumab arm was 9.4% vs. 10% in the spartalizumab arm. The most common any-grade treatment-related adverse events (TRAEs, ≥20%) were nausea (37.5%), asthenia and vomiting (28.1% each), diarrhoea, pyrexia, and decreased appetite (25.0% each) in the combination arm; TRAEs ≥10% were pruritus (23.3%), and rash (10.0%) in the spartalizumab-alone arm. Conclusion: Capmatinib at 400 mg bid plus spartalizumab 300 mg q3w was established as the RP2D, with manageable toxicities and no significant safety signals, but the combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. Impact and implications: Simultaneous targeting of MET and programmed cell death protein 1 may provide synergistic clinical benefit in patients with advanced HCC. This is the first trial to report a combination of capmatinib (MET inhibitor) and spartalizumab (programmed cell death protein 1 inhibitor) as second-line treatment after sorafenib for advanced HCC. The combination did not show superior clinical activity compared with spartalizumab single-agent treatment in patients with advanced HCC who had previously been treated with sorafenib. The results indicate that there is a clear need to identify a reliable predictive marker of response for HCC and to identify patients with HCC that would benefit from the combination of checkpoint inhibitor +/- targeted therapy. Clinical trial number: NCT02795429.

4.
Sci Transl Med ; 15(689): eabm8729, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989374

RESUMO

In the context of cancer, clonal hematopoiesis of indeterminate potential (CHIP) is associated with the development of therapy-related myeloid neoplasms and shorter overall survival. Cell-free DNA (cfDNA) sequencing is becoming widely adopted for genomic screening of patients with cancer but has not been used extensively to determine CHIP status because of a requirement for matched blood and tumor sequencing. We present an accurate classification approach to determine the CH status from cfDNA sequencing alone, applying our model to 4324 oncology clinical cfDNA samples. Using this method, we determined that 30.3% of patients in this cohort have evidence of CH, and the incidence of CH varies by tumor type. Matched RNA sequencing data show evidence of increased inflammation, especially neutrophil activation, within the tumors and tumor microenvironments of patients with CH. In addition, patients with CH had evidence of neutrophil activation systemically, pointing to a potential mechanism of action for the worse outcomes associated with CH status. Neutrophil activation may be one of many mechanisms, however, because patients with estrogen receptor-positive breast cancer harboring TET2 frameshift mutations had worse outcomes but similar neutrophil frequencies to patients without CH. Together, these data show the feasibility of detecting CH through cfDNA sequencing alone and an application of this method, demonstrating increased inflammation in patients with CH both systemically and in the tumor microenvironment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Hematopoiese Clonal/genética , Ácidos Nucleicos Livres/genética , Hematopoese/genética , Neoplasias/patologia , Inflamação , Análise de Sequência de DNA , Mutação/genética , Microambiente Tumoral
5.
Cancer Res ; 82(12): 2269-2280, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35442400

RESUMO

The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K. These analyses uncovered widespread alternatively spliced isoforms linked to proliferation, metabolism, and splicing in PIK3CA-mutant cells, which were reversed by inhibition of PI3Kα. Analysis of paired tumor biopsies from patients with PIK3CA-mutated breast cancer undergoing treatment with PI3Kα inhibitors identified widespread splicing alterations that affect specific isoforms in common with the preclinical models, and these alterations, namely PTK2/FRNK and AFMID isoforms, were validated as functional drivers of cancer cell growth or migration. Mechanistically, isoform-specific splicing factors mediated PI3K-dependent RNA splicing. Treatment with splicing inhibitors rendered breast cancer cells more sensitive to the PI3Kα inhibitor alpelisib, resulting in greater growth inhibition than alpelisib alone. This study provides the first comprehensive analysis of widespread splicing alterations driven by oncogenic PI3K in breast cancer. The atlas of PI3K-mediated splicing programs establishes a key role for the PI3K pathway in regulating splicing, opening new avenues for exploiting PI3K signaling as a therapeutic vulnerability in breast cancer. SIGNIFICANCE: Transcriptomic analysis reveals a key role for the PI3K pathway in regulating RNA splicing, uncovering new mechanisms by which PI3K regulates proliferation and metabolism in breast cancer. See related commentary by Claridge and Hopkins, p. 2216.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Splicing de RNA/genética , Transcriptoma
6.
Mol Oncol ; 15(10): 2766-2781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33817986

RESUMO

Somatic mutations in the KRAS oncogene are associated with poor outcomes in locally advanced rectal cancer but the underlying biologic mechanisms are not fully understood. We profiled mRNA in 76 locally advanced rectal adenocarcinomas from patients that were enrolled in a prospective clinical trial and investigated differences in gene expression between KRAS mutant (KRAS-mt) and KRAS-wild-type (KRAS-wt) patients. We found that KRAS-mt tumors display lower expression of genes related to the tumor stroma and remodeling of the extracellular matrix. We validated our findings using samples from The Cancer Genome Atlas (TCGA) and also by performing immunohistochemistry (IHC) and immunofluorescence (IF) in orthogonal cohorts. Using in vitro and in vivo models, we show that oncogenic KRAS signaling within the epithelial cancer cells modulates the activity of the surrounding fibroblasts in the tumor microenvironment.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Retais , Ensaios Clínicos como Assunto , Matriz Extracelular , Fibroblastos/patologia , Humanos , Mutação/genética , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Retais/genética , Neoplasias Retais/patologia , Microambiente Tumoral
7.
Cell Stem Cell ; 24(1): 153-165.e7, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472158

RESUMO

Leukemias exhibit a dysregulated developmental program mediated through both genetic and epigenetic mechanisms. Although IKZF2 is expressed in hematopoietic stem cells (HSCs), we found that it is dispensable for mouse and human HSC function. In contrast to its role as a tumor suppressor in hypodiploid B-acute lymphoblastic leukemia, we found that IKZF2 is required for myeloid leukemia. IKZF2 is highly expressed in leukemic stem cells (LSCs), and its deficiency results in defective LSC function. IKZF2 depletion in acute myeloid leukemia (AML) cells reduced colony formation, increased differentiation and apoptosis, and delayed leukemogenesis. Gene expression, chromatin accessibility, and direct IKZF2 binding in MLL-AF9 LSCs demonstrate that IKZF2 regulates a HOXA9 self-renewal gene expression program and inhibits a C/EBP-driven differentiation program. Ectopic HOXA9 expression and CEBPE depletion rescued the effects of IKZF2 depletion. Thus, our study shows that IKZF2 regulates the AML LSC program and provides a rationale to therapeutically target IKZF2 in myeloid leukemia.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Proteínas de Ligação a DNA/fisiologia , Regulação Leucêmica da Expressão Gênica , Leucemia Experimental/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/fisiologia , Animais , Cromatina/genética , Cromatina/metabolismo , Feminino , Hematopoese , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo
8.
Nat Commun ; 10(1): 2691, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217428

RESUMO

The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.


Assuntos
Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Experimental/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Pteridinas/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Flavinas , Perfilação da Expressão Gênica , Humanos , Leucemia Experimental/sangue , Leucemia Mieloide Aguda/sangue , Masculino , Camundongos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pteridinas/uso terapêutico , RNA/metabolismo , Motivo de Reconhecimento de RNA/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma/efeitos dos fármacos , Células Tumorais Cultivadas
9.
Nat Biotechnol ; 35(4): 350-353, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263295

RESUMO

We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.


Assuntos
Algoritmos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Inativação Gênica , Aprendizado de Máquina , RNA Interferente Pequeno/genética , Software , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico/métodos , Análise de Sequência de RNA/métodos
10.
Genome Med ; 7: 110, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26521025

RESUMO

BACKGROUND: Gene profiling of diffuse large B cell lymphoma (DLBCL) has revealed broad gene expression deregulation compared to normal B cells. While many studies have interrogated well known and annotated genes in DLBCL, none have yet performed a systematic analysis to uncover novel unannotated long non-coding RNAs (lncRNA) in DLBCL. In this study we sought to uncover these lncRNAs by examining RNA-seq data from primary DLBCL tumors and performed supporting analysis to identify potential role of these lncRNAs in DLBCL. METHODS: We performed a systematic analysis of novel lncRNAs from the poly-adenylated transcriptome of 116 primary DLBCL samples. RNA-seq data were processed using de novo transcript assembly pipeline to discover novel lncRNAs in DLBCL. Systematic functional, mutational, cross-species, and co-expression analyses using numerous bioinformatics tools and statistical analysis were performed to characterize these novel lncRNAs. RESULTS: We identified 2,632 novel, multi-exonic lncRNAs expressed in more than one tumor, two-thirds of which are not expressed in normal B cells. Long read single molecule sequencing supports the splicing structure of many of these lncRNAs. More than one-third of novel lncRNAs are differentially expressed between the two major DLBCL subtypes, ABC and GCB. Novel lncRNAs are enriched at DLBCL super-enhancers, with a fraction of them conserved between human and dog lymphomas. We see transposable elements (TE) overlap in the exonic regions; particularly significant in the last exon of the novel lncRNAs suggest potential usage of cryptic TE polyadenylation signals. We identified highly co-expressed protein coding genes for at least 88 % of the novel lncRNAs. Functional enrichment analysis of co-expressed genes predicts a potential function for about half of novel lncRNAs. Finally, systematic structural analysis of candidate point mutations (SNVs) suggests that such mutations frequently stabilize lncRNA structures instead of destabilizing them. CONCLUSIONS: Discovery of these 2,632 novel lncRNAs in DLBCL significantly expands the lymphoma transcriptome and our analysis identifies potential roles of these lncRNAs in lymphomagenesis and/or tumor maintenance. For further studies, these novel lncRNAs also provide an abundant source of new targets for antisense oligonucleotide pharmacology, including shared targets between human and dog lymphomas.


Assuntos
Linfoma Difuso de Grandes Células B/genética , RNA Longo não Codificante/genética , Animais , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Cães , Humanos , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA