Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 77(1): 120-137.e9, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31733993

RESUMO

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.


Assuntos
Adaptação Fisiológica/fisiologia , Ácidos Graxos/metabolismo , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo/fisiologia , Humanos , Camundongos , Invasividade Neoplásica/patologia , Fenótipo , Transdução de Sinais/fisiologia
2.
Genes Dev ; 33(5-6): 310-332, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804224

RESUMO

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.


Assuntos
Apoptose , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Homeodomínio/metabolismo , Melanoma/genética , Melanoma/fisiopatologia , Mutação/genética , Fatores do Domínio POU/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Humanos , Autoantígeno Ku/metabolismo , Fatores do Domínio POU/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico
3.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096186

RESUMO

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Assuntos
Plasticidade Celular/genética , Reprogramação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Biossíntese de Proteínas/genética , Animais , Microambiente Celular , Evolução Molecular , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamina/farmacologia , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Invasividade Neoplásica/genética , Crista Neural/citologia , Fenótipo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia
4.
Biochem Pharmacol ; 213: 115633, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269887

RESUMO

Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2+ cancer cells. By kinome array analysis, we showed that NE time-dependently inhibited the phosphorylation of two distinct sets of kinases. The first set, including ERBB2 downstream signaling kinases such as ERK1/2, ATK, and AKT substrates, showed inhibition after 2 h of NE treatment. The second set, which comprised kinases involved in DNA damage response, displayed inhibition after 72 h. Flow cytometry analyses showed that NE induced G0/G1 cell cycle arrest and early apoptosis. By immunoblot, light and electron microscopy, we revealed that NE also transiently induced autophagy, mediated by increased expression levels and nuclear localization of TFEB and TFE3. Altered TFEB/TFE3 expression was accompanied by dysregulation of mitochondrial energy metabolism and dynamics, leading to a decrease in ATP production, glycolytic activity, and a transient downregulation of fission proteins. Increased TFEB and TFE3 expression was also observed in ERBB2-/ERBB1 + BCa cells, supporting that NE may act through other ERBB family members and/or other kinases. Overall, this study highlights NE as a potent activator of TFEB and TFE3, leading to the suppression of cancer cell survival through autophagy induction, cell cycle arrest, apoptosis, mitochondrial dysfunction and inhibition of DNA damage response.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Autofagia , Metabolismo Energético
5.
Nat Commun ; 14(1): 6433, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833263

RESUMO

Nuclear factors rapidly scan the genome for their targets, but the role of nuclear organization in such search is uncharted. Here we analyzed how multiple factors explore chromatin, combining live-cell single-molecule tracking with multifocal structured illumination of DNA density. We find that factors displaying higher bound fractions sample DNA-dense regions more exhaustively. Focusing on the tumor-suppressor p53, we demonstrate that it searches for targets by alternating between rapid diffusion in the interchromatin compartment and compact sampling of chromatin dense regions. Efficient targeting requires balanced interactions with chromatin: fusing p53 with an exogenous intrinsically disordered region potentiates p53-mediated target gene activation at low concentrations, but leads to condensates at higher levels, derailing its search and downregulating transcription. Our findings highlight the role of disordered regions on factors search and showcase a powerful method to generate traffic maps of the eukaryotic nucleus to dissect how its organization guides nuclear factors action.


Assuntos
Cromatina , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Cromossomos/metabolismo , Ativação Transcricional , Núcleo Celular/genética , Núcleo Celular/metabolismo
6.
Front Cell Dev Biol ; 10: 930250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912100

RESUMO

Melanoma is a complex and aggressive cancer type that contains different cell subpopulations displaying distinct phenotypes within the same tumor. Metabolic reprogramming, a hallmark of cell transformation, is essential for melanoma cells to adopt different phenotypic states necessary for adaptation to changes arising from a dynamic milieu and oncogenic mutations. Increasing evidence demonstrates how melanoma cells can exhibit distinct metabolic profiles depending on their specific phenotype, allowing adaptation to hostile microenvironmental conditions, such as hypoxia or nutrient depletion. For instance, increased glucose consumption and lipid anabolism are associated with proliferation, while a dependency on exogenous fatty acids and an oxidative state are linked to invasion and metastatic dissemination. How these different metabolic dependencies are integrated with specific cell phenotypes is poorly understood and little is known about metabolic changes underpinning melanoma metastasis. Recent evidence suggests that metabolic rewiring engaging transitions to invasion and metastatic progression may be dependent on several factors, such as specific oncogenic programs or lineage-restricted mechanisms controlling cell metabolism, intra-tumor microenvironmental cues and anatomical location of metastasis. In this review we highlight how the main molecular events supporting melanoma metabolic rewiring and phenotype-switching are parallel and interconnected events that dictate tumor progression and metastatic dissemination through interplay with the tumor microenvironment.

7.
Int J Biochem Cell Biol ; 139: 106059, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400318

RESUMO

In recent years considerable progress has been made in identifying the impact of mRNA translation in tumour progression. Cancer cells hijack the pre-existing translation machinery to thrive under the adverse conditions originating from intrinsic oncogenic programs, that increase their energetic demand, and from the hostile microenvironment. A key translation program frequently dysregulated in cancer is the Integrated Stress Response, that reprograms translation by attenuating global protein synthesis to decrease metabolic demand while increasing translation of specific mRNAs that support survival, migration, immune escape. In this review we provide an overview of the Integrated Stress Response, emphasise its dual role during tumorigenesis and cancer progression, and highlight the therapeutic strategies available to target it.


Assuntos
Fator 4 Ativador da Transcrição , Fator de Iniciação 2 em Eucariotos , Fosforilação
8.
Nat Commun ; 12(1): 3318, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083536

RESUMO

Dormancy, a reversible quiescent cellular state characterized by greatly reduced metabolic activity, protects from genetic damage, prolongs survival and is crucial for tissue homeostasis and cellular response to injury or transplantation. Dormant cells have been characterized in many tissues, but their identification, isolation and characterization irrespective of tissue of origin remains elusive. Here, we develop a live cell ratiometric fluorescent Optical Stem Cell Activity Reporter (OSCAR) based on the observation that phosphorylation of RNA Polymerase II (RNApII), a hallmark of active mRNA transcription elongation, is largely absent in dormant stem cells from multiple lineages. Using the small intestinal crypt as a model, OSCAR reveals in real time the dynamics of dormancy induction and cellular differentiation in vitro, and allows the identification and isolation of several populations of transcriptionally diverse OSCARhigh and OSCARlow intestinal epithelial cell states in vivo. In particular, this reporter is able to identify a dormant OSCARhigh cell population in the small intestine. OSCAR therefore provides a tool for a better understanding of dormant stem cell biology.


Assuntos
RNA Polimerase II/metabolismo , Fase de Repouso do Ciclo Celular/fisiologia , Animais , Separação Celular , Quinase 9 Dependente de Ciclina/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Transcrição Gênica
9.
Pigment Cell Melanoma Res ; 32(6): 792-808, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31207090

RESUMO

In response to the dynamic intra-tumor microenvironment, melanoma cells adopt distinct phenotypic states associated with differential expression of the microphthalmia-associated transcription factor (MITF). The response to hypoxia is driven by hypoxia-inducible transcription factors (HIFs) that reprogram metabolism and promote angiogenesis. HIF1α indirectly represses MITF that can activate HIF1α expression. Although HIF and MITF share a highly related DNA-binding specificity, it is unclear whether they co-regulate subset of target genes. Moreover, the genomewide impact of hypoxia on melanoma and whether melanoma cell lines representing different phenotypic states exhibit distinct hypoxic responses is unknown. Here we show that three different melanoma cell lines exhibit widely different hypoxia responses with only a core 23 genes regulated in common after 12 hr in hypoxia. Surprisingly, under hypoxia MITF is transiently up-regulated by HIF1α and co-regulates a subset of HIF targets including VEGFA. Significantly, we also show that MITF represses itself and also regulates SDHB to control the TCA cycle and suppress pseudo-hypoxia. Our results reveal a previously unsuspected role for MITF in metabolism and the network of factors underpinning the hypoxic response in melanoma.


Assuntos
Ciclo do Ácido Cítrico , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Hipóxia Tumoral , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Melanoma/genética , Invasividade Neoplásica , Succinato Desidrogenase/metabolismo , Hipóxia Tumoral/genética , Regulação para Cima/genética
10.
Pigment Cell Melanoma Res ; 27(4): 565-79, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24650003

RESUMO

Little is known as to how cells ensure that organelle size and number are coordinated to correctly couple organelle biogenesis to the demands of proliferation or differentiation. OA1 is a melanosome-associated G-protein-coupled receptor involved in melanosome biogenesis during melanocyte differentiation. Cells lacking OA1 contain fewer, but larger, mature melanosomes. Here, we show that OA1 loss of function reduces both the basal expression and the α-melanocyte-stimulating hormone/cAMP-dependent induction of the microphthalmia-associated transcription factor (MITF), the master regulator of melanocyte differentiation. In turn, this leads to a significant reduction in expression of PMEL, a major melanosomal structural protein, but does not affect tyrosinase and melanin levels. In line with its pivotal role in sensing melanosome maturation, OA1 expression rescues melanosome biogenesis, activates MITF expression and thereby coordinates melanosome size and number, providing a quality control mechanism for the organelle in which resides. Thus, resident sensor receptors can activate a transcriptional cascade to specifically promote organelle biogenesis.


Assuntos
Diferenciação Celular/fisiologia , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/fisiologia , Melanócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígeno gp100 de Melanoma/biossíntese , Animais , Sequência de Bases , Linhagem Celular , Proteínas do Olho/genética , Humanos , Melanócitos/citologia , Melanossomas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Dados de Sequência Molecular , Receptores Acoplados a Proteínas G/genética , alfa-MSH/genética , alfa-MSH/metabolismo , Antígeno gp100 de Melanoma/genética
11.
Mol Cell Biol ; 32(22): 4674-83, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22988297

RESUMO

Deregulation of transcription arising from mutations in key signaling pathways is a hallmark of cancer. In melanoma, the most aggressive and lethal form of skin cancer, the Brn-2 transcription factor (POU3F2) regulates proliferation and invasiveness and lies downstream from mitogen-activated protein kinase (MAPK) and Wnt/ß-catenin, two melanoma-associated signaling pathways. In vivo Brn-2 represses expression of the microphthalmia-associated transcription factor, MITF, to drive cells to a more stem cell-like and invasive phenotype. Given the key role of Brn-2 in regulating melanoma biology, understanding the signaling pathways that drive Brn-2 expression is an important issue. Here, we show that inhibition of phosphatidylinositol 3-kinase (PI3K) signaling reduces invasiveness of melanoma cells in culture and strongly inhibits Brn-2 expression. Pax3, a transcription factor regulating melanocyte lineage-specific genes, directly binds and regulates the Brn-2 promoter, and Pax3 expression is also decreased upon PI3K inhibition. Collectively, our results highlight a crucial role for PI3K in regulating Brn-2 and Pax3 expression, reveal a mechanism by which PI3K can regulate invasiveness, and imply that PI3K signaling is a key determinant of melanoma subpopulation diversity. Together with our previous work, the results presented here now place Brn-2 downstream of three melanoma-associated signaling pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Melanoma/patologia , Fatores do Domínio POU/genética , Fatores de Transcrição Box Pareados/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fator de Transcrição PAX3 , Fatores do Domínio POU/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Transcrição Gênica , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA