Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 559(7715): 603-607, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046076

RESUMO

The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth's recent climate history1. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower2,3. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago4 and was followed by about 10,000 years of rapid deglaciation into the Holocene1. The masses of the melting polar ice sheets and the change in ocean volume, and hence in GMSL, are primary constraints for climate models constructed to describe the transition between the Last Glacial Maximum and the Holocene, and future changes; but the rate, timing and magnitude of this transition remain uncertain. Here we show that sea level at the shelf edge of the Great Barrier Reef dropped by around 20 metres between 21,900 and 20,500 years ago, to -118 metres relative to the modern level. Our findings are based on recovered and radiometrically dated fossil corals and coralline algae assemblages, and represent relative sea level at the Great Barrier Reef, rather than GMSL. Subsequently, relative sea level rose at a rate of about 3.5 millimetres per year for around 4,000 years. The rise is consistent with the warming previously observed at 19,000 years ago1,5, but we now show that it occurred just after the 20-metre drop in relative sea level and the related increase in global ice volumes. The detailed structure of our record is robust because the Great Barrier Reef is remote from former ice sheets and tectonic activity. Relative sea level can be influenced by Earth's response to regional changes in ice and water loadings and may differ greatly from GMSL. Consequently, we used glacio-isostatic models to derive GMSL, and find that the Last Glacial Maximum culminated 20,500 years ago in a GMSL low of about -125 to -130 metres.


Assuntos
Camada de Gelo/química , Água do Mar/análise , Água do Mar/química , Animais , Antozoários , Recifes de Corais , Foraminíferos , História Antiga , Rodófitas
2.
Proc Natl Acad Sci U S A ; 116(18): 8824-8833, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30962379

RESUMO

Polynesians introduced the tropical crop taro (Colocasia esculenta) to temperate New Zealand after 1280 CE, but evidence for its cultivation is limited. This contrasts with the abundant evidence for big game hunting, raising longstanding questions of the initial economic and ecological importance of crop production. Here we compare fossil data from wetland sedimentary deposits indicative of taro and leaf vegetable (including Sonchus and Rorippa spp.) cultivation from Ahuahu, a northern New Zealand offshore island, with Raivavae and Rapa, both subtropical islands in French Polynesia. Preservation of taro pollen on all islands between 1300 CE and 1550 CE indicates perennial cultivation over multiple growing seasons, as plants rarely flower when frequently harvested. The pollen cooccurs with previously undetected fossil remains of extinct trees, as well as many weeds and commensal invertebrates common to tropical Polynesian gardens. Sedimentary charcoal and charred plant remains show that fire use rapidly reduced forest cover, particularly on Ahuahu. Fires were less frequent by 1500 CE on all islands as forest cover diminished, and short-lived plants increased, indicating higher-intensity production. The northern offshore islands of New Zealand were likely preferred sites for early gardens where taro production was briefly attempted, before being supplanted by sweet potato (Ipomoea batatas), a more temperate climate-adapted crop, which was later established in large-scale cultivation systems on the mainland after 1500 CE.


Assuntos
Agricultura/história , Clima , Produtos Agrícolas , Florestas , Fósseis , História Antiga , Humanos , Paleontologia , Polinésia
3.
Mol Ecol ; 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989297

RESUMO

An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a "single-sample" evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14 C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long-lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.

5.
Proc Natl Acad Sci U S A ; 111(15): 5480-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706801

RESUMO

Recent theories for glacial-interglacial climate transitions call on millennial climate perturbations that purged the deep sea of sequestered carbon dioxide via a "bipolar ventilation seesaw." However, the viability of this hypothesis has been contested, and robust evidence in its support is lacking. Here we present a record of North Atlantic deep-water radiocarbon ventilation, which we compare with similar data from the Southern Ocean. A striking coherence in ventilation changes is found, with extremely high ventilation ages prevailing across the deep Atlantic during the last glacial period. The data also reveal two reversals in the ventilation gradient between the deep North Atlantic and Southern Ocean during Heinrich Stadial 1 and the Younger Dryas. These coincided with periods of sustained atmospheric CO2 rise and appear to have been driven by enhanced ocean-atmosphere exchange, primarily in the Southern Ocean. These results confirm the operation of a bipolar ventilation seesaw during deglaciation and underline the contribution of abrupt regional climate anomalies to longer-term global climate transitions.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Radioisótopos de Carbono/análise , Camada de Gelo , Água do Mar/química , Movimentos da Água , Regiões Antárticas , Oceano Atlântico , Geografia , História Antiga
6.
PLoS One ; 18(3): e0281904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920897

RESUMO

Since the 1970s, monumental stone structures now called mustatil have been documented across Saudi Arabia. However, it was not until 2017 that the first intensive and systematic study of this structure type was undertaken, although this study could not determine the precise function of these features. Recent excavations in AlUla have now determined that these structures fulfilled a ritual purpose, with specifically selected elements of both wild and domestic taxa deposited around a betyl. This paper outlines the results of the University of Western Australia's work at site IDIHA-0008222, a 140 m long mustatil (IDIHA-F-0011081), located 55 km east of AlUla. Work at this site sheds new and important light on the cult, herding and 'pilgrimage' in the Late Neolithic of north-west Arabia, with the site revealing one of the earliest chronometrically dated betyls in the Arabian Peninsula and some of the earliest evidence for domestic cattle in northern Arabia.


Assuntos
Comportamento Ritualístico , Animais , Bovinos , Arábia , Arábia Saudita
7.
Sci Adv ; 9(41): eadh9513, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824627

RESUMO

Antarctic climate warming and atmospheric CO2 rise during the last deglaciation may be attributed in part to sea ice reduction in the Southern Ocean. Yet, glacial-interglacial Antarctic sea ice dynamics and underlying mechanisms are poorly constrained, as robust sea ice proxy evidence is sparse. Here, we present a molecular biomarker-based sea ice record that resolves the spring/summer sea ice variability off East Antarctica during the past 40 thousand years (ka). Our results indicate that substantial sea ice reduction culminated rapidly and contemporaneously with upwelling of carbon-enriched waters in the Southern Ocean at the onset of the last deglaciation but began at least ~2 ka earlier probably driven by an increasing local integrated summer insolation. Our findings suggest that sea ice reduction and associated feedbacks facilitated stratification breakup and outgassing of CO2 in the Southern Ocean and warming in Antarctica but may also have played a leading role in initializing these deglacial processes in the Southern Hemisphere.

8.
Proc Natl Acad Sci U S A ; 106(13): 5204-8, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19307564

RESUMO

Deep-sea corals are found on hard substrates on seamounts and continental margins worldwide at depths of 300 to approximately 3,000 m. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age dates from the deep water proteinaceous corals Gerardia sp. and Leiopathes sp. show that radial growth rates are as low as 4 to 35 mum year(-1) and that individual colony longevities are on the order of thousands of years. The longest-lived Gerardia sp. and Leiopathes sp. specimens were 2,742 years and 4,265 years, respectively. The management and conservation of deep-sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep-water fishing practices. In light of their unusual longevity, a better understanding of deep-sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea habitat-forming species.


Assuntos
Antozoários/fisiologia , Longevidade , Animais , Antozoários/crescimento & desenvolvimento , Biomassa , Datação Radiométrica
9.
Proc Natl Acad Sci U S A ; 106(15): 6345-50, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332780

RESUMO

The marine cyanobacterium Trichodesmium is ubiquitous in tropical and subtropical seas and is an important contributor to global N and C cycling. We sought to characterize metabolic uptake patterns in individual Trichodesmium IMS-101 cells by quantitatively imaging (13)C and (15)N uptake with high-resolution secondary ion mass spectrometry (NanoSIMS). Trichodesmium fix both CO(2) and N(2) concurrently during the day and are, thus, faced with a balancing act: the O(2) evolved during photosynthesis inhibits nitrogenase, the key enzyme in N(2) fixation. After performing correlated transmission electron microscopy (TEM) and NanoSIMS analysis on trichome thin-sections, we observed transient inclusion of (15)N and (13)C into discrete subcellular bodies identified as cyanophycin granules. We speculate that Trichodesmium uses these dynamic storage bodies to uncouple CO(2) and N(2) fixation from overall growth dynamics. We also directly quantified both CO(2) and N(2) fixation at the single cell level using NanoSIMS imaging of whole cells in multiple trichomes. Our results indicate maximal CO(2) fixation rates in the morning, compared with maximal N(2) fixation rates in the afternoon, bolstering the argument that segregation of CO(2) and N(2) fixation in Trichodesmium is regulated in part by temporal factors. Spatial separation of N(2) and CO(2) fixation may also have a role in metabolic segregation in Trichodesmium. Our approach in combining stable isotope labeling with NanoSIMS and TEM imaging can be extended to other physiologically relevant elements and processes in other important microbial systems.


Assuntos
Cianobactérias/química , Cianobactérias/metabolismo , Fixação de Nitrogênio , Fotossíntese , Cianobactérias/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Espectrometria de Massa de Íon Secundário
10.
Sci Rep ; 12(1): 18090, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302796

RESUMO

The South Pacific Gyre (SPG) plays a vital role in regulating Southern Hemisphere climate and ecosystems. The SPG has been intensifying since the twentieth century due to changes in large scale wind forcing. These changes result from variability in the Southern Annular Mode (SAM), causing warming along the eastern SPG which affects local ecosystems. However, our understanding of SPG variability on timescales greater than several decades is poor due to limited observations. Marine sediment cores are traditionally used to determine if recent ocean trends are anomalous, but rarely capture centennial variability in the southwest Pacific and limit our understanding of SPG variability. Here we capture centennial SPG dynamics using a novel high-resolution paleocirculation archive: radiocarbon reservoir ages (R) and local reservoir corrections (∆R) in SPG deep-sea black corals. We find black coral R and ∆R correlates with SAM reconstructions over 0-1000 cal BP and 2000-3000 cal BP. We propose this correlation indicates varying transport of well-ventilated subtropical waters resulting from SPG and SAM interactions. We reconstruct several 'spin up' cycles reminiscent of the recent gyre intensification, which has been attributed to anthropogenic causes. This implies gyre strength and SAM show natural co-variability on anthropogenic timescales which should factor into future climate projections.


Assuntos
Antozoários , Ecossistema , Animais , Sedimentos Geológicos , Oceano Pacífico
11.
Sci Total Environ ; 807(Pt 2): 150880, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634342

RESUMO

In November 2015, the collapse of the Fundão dam (Minas Gerais, Brazil) carried over 40 × 106 m3 of iron ore tailings into the Doce river and caused massive environmental and socioeconomic impacts across the watershed. The downstream mudslide scavenged contaminants deposited in the riverbed, and several potentially toxic elements were further released through reduction and solubilization of Fe oxy-hydroxides under estuarine conditions. A turbidity plume was formed off the river mouth, but the detection of contaminants' dispersion in the ocean remains poorly assessed. This situation is specially concerning because Southwestern Atlantic's largest and richest reefs are located 70-250 km to the north of the Doce river mouth, and the legal dispute over the extent of monitoring, compensation and restoration measures are based either on indirect evidence from modeling or on direct evidence from remote sensing and contaminated organisms. Coral skeletons can incorporate trace elements and are considered good monitors of marine pollution, including inputs from open cut mining. Here, we studied a Montastraea cavernosa (Linnaeus 1767) coral colony collected 220 km northward to the river mouth, using X-rays for assessing growth bands and Laser Ablation Inductively Coupled Plasma Mass Spectrometry to recover trace elements incorporated in growth bands formed between 2014 and 2018. A threefold positive Fe anomaly was identified in early 2016, associated with negative anomalies in several elements. Variation in Ba and Y was coherent with the region's sedimentation dynamics, but also increased after 2016, akin to Pb, V and Zn. Coral growth rates decreased after the disaster. Besides validating M. cavernosa as a reliable archive of ocean chemistry, our results evidence wide-reaching sub-lethal coral contamination in the Abrolhos reefs, as well as different incorporation mechanisms into corals' skeletons.


Assuntos
Antozoários , Colapso Estrutural , Oligoelementos , Animais , Monitoramento Ambiental , Rios
12.
Environ Sci Technol ; 45(18): 7727-36, 2011 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-21854037

RESUMO

The mineral waste from some mines has the capacity to trap and store CO(2) within secondary carbonate minerals via the process of silicate weathering. Nesquehonite [MgCO(3)·3H(2)O] forms by weathering of Mg-silicate minerals in kimberlitic mine tailings at the Diavik Diamond Mine, Northwest Territories, Canada. Less abundant Na- and Ca-carbonate minerals precipitate from sewage treatment effluent deposited in the tailings storage facility. Radiocarbon and stable carbon and oxygen isotopes are used to assess the ability of mine tailings to trap and store modern CO(2) within these minerals in the arid, subarctic climate at Diavik. Stable isotopic data cannot always uniquely identify the source of carbon stored within minerals in this setting; however, radiocarbon isotopic data provide a reliable quantitative estimate for sequestration of modern carbon. At least 89% of the carbon trapped within secondary carbonate minerals at Diavik is derived from a modern source, either by direct uptake of atmospheric CO(2) or indirect uptake though the biosphere. Silicate weathering at Diavik is trapping 102-114 g C/m(2)/y within nesquehonite, which corresponds to a 2 orders of magnitude increase over the background rate of CO(2) uptake predicted from arctic and subarctic river catchment data.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Resíduos Industriais , Magnésio/química , Mineração , Atmosfera , Isótopos de Carbono/análise , Radioisótopos de Carbono/análise , Carbonatos/química , Diamante , Territórios do Noroeste , Isótopos de Oxigênio/análise , Silicatos/química , Difração de Raios X
13.
Sci Total Environ ; 786: 147393, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964784

RESUMO

Due to the increasing concerns of global warming and short instrumental records of sea surface temperature (SST), coral-based proxies, such as δ18O, Sr/Ca, U/Ca, and Li/Mg have been developed and applied to reconstruct SST in paleoclimate studies. However, these proxies are not universally applicable in different environments, because they are affected by coral physiology and various environmental factors. In this study, seven long-lived Porites corals were collected from the southern sector of the Great Barrier Reef (GBR) off the coast of Gladstone and the central sector of the GBR within the Whitsunday Islands in 2017 and 2018. Coral sites were selected to cover a wide latitudinal range with different annual temperature ranges. Century-long geochemical records (Li/Ca, B/Ca, Mg/Ca, Sr/Ca, and U/Ca) were generated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at weekly resolution. This study has tested the robustness of two traditional temperature proxies (Sr/Ca and U/Ca), a recently developed temperature proxy (Li/Mg), and an additional potential temperature proxy (B/Mg). U/Ca was found to be the most robust and stable temperature proxy for corals from the GBR over long-term timescales. Sr/Ca is a close second, however due to the lower response of Sr fractionation per 1 °C, it is more sensitive to analytical methods and less sensitive to annual SST changes than U/Ca. Li/Mg and B/Mg have clearer periodicity compared to Li/Ca and B/Ca. Both Li/Mg and B/Mg are strongly correlated with SST, which is due to the cancellation of temperature-independent commonality. Empirical calibrations established from this multi-proxy approach increase the certainty of temperature reconstruction when a single proxy does not perform well. These site- and colony-specific SST calibrations also provide an opportunity to revisit the universal multi-trace element calibration of sea surface temperatures (UMTECS) model, which does not require the knowledge of local SST for calibration.


Assuntos
Antozoários , Animais , Recifes de Corais , Ilhas , Esqueleto , Temperatura
14.
Science ; 370(6517): 716-720, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33004677

RESUMO

New radiocarbon and sedimentological results from the Gulf of Alaska document recurrent millennial-scale episodes of reorganized Pacific Ocean ventilation synchronous with rapid Cordilleran Ice Sheet discharge, indicating close coupling of ice-ocean dynamics spanning the past 42,000 years. Ventilation of the intermediate-depth North Pacific tracks strength of the Asian monsoon, supporting a role for moisture and heat transport from low latitudes in North Pacific paleoclimate. Changes in carbon-14 age of intermediate waters are in phase with peaks in Cordilleran ice-rafted debris delivery, and both consistently precede ice discharge events from the Laurentide Ice Sheet, known as Heinrich events. This timing precludes an Atlantic trigger for Cordilleran Ice Sheet retreat and instead implicates the Pacific as an early part of a cascade of dynamic climate events with global impact.

15.
Nat Commun ; 11(1): 1826, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286283

RESUMO

The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control tidewater terminus position on an open shelf under temperate conditions delaying climate-driven retreat.

16.
PLoS One ; 14(1): e0210168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30673738

RESUMO

The Australian lungfish has been studied for more than a century without any knowledge of the longevity of the species. Traditional methods for ageing fish, such as analysis of otolith (ear stone) rings is complicated in that lungfish otoliths differ from teleost fish in composition. As otolith sampling is also lethal, this is not appropriate for a protected species listed under Australian legislation. Lungfish scales were removed from 500 fish from the Brisbane, Burnett and Mary rivers. A sub-sample of scales (85) were aged using bomb radiocarbon techniques and validated using scales marked previously with oxytetracycline. Lungfish ages ranged from 2.5-77 years of age. Estimated population age structures derived using an Age Length Key revealed different recruitment patterns between river systems. There were statistically significant von Bertalanffy growth model parameters estimated for each of the three rivers based on limited sample sizes. In addition, length frequency distributions between river systems were also significantly different. Further studies will be conducted to review drivers that may explain these inter-river differences.


Assuntos
Escamas de Animais/química , Peixes/fisiologia , Longevidade , Datação Radiométrica/métodos , Animais , Austrália , Rios
17.
Anal Chem ; 80(15): 5986-92, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18578543

RESUMO

We present a quantitative, imaging technique based on nanometer-scale secondary ion mass spectrometry for mapping the 3D elemental distribution present in an individual micrometer-sized Bacillus spore. We use depth profile analysis to access the 3D compositional information of an intact spore without the additional sample preparation steps (fixation, embedding, and sectioning) typically used to access substructural information in biological samples. The method is designed to ensure sample integrity for forensic characterization of Bacillus spores. The minimal sample preparation/alteration required in this methodology helps to preserve sample integrity. Furthermore, the technique affords elemental distribution information at the individual spore level with nanometer-scale spatial resolution and high (microg/g) analytical sensitivity. We use the technique to map the 3D elemental distribution present within Bacillus thuringiensis israelensis spores.


Assuntos
Imageamento Tridimensional/métodos , Espectrometria de Massa de Íon Secundário/métodos , Esporos Bacterianos/química , Esporos Bacterianos/ultraestrutura , Bacillus , Bacillus thuringiensis , Elementos Químicos , Ciências Forenses/métodos
18.
Sci Rep ; 8(1): 9933, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026564

RESUMO

The dingo is the only placental land mammal aside from murids and bats to have made the water crossings to reach Australia prior to European arrival. It is thought that they arrived as a commensal animal with people, some time in the mid Holocene. However, the timing of their arrival is still a subject of major debate with published age estimates varying widely. This is largely because the age estimates for dingo arrival are based on archaeological deposit dates and genetic divergence estimates, rather than on the dingo bones themselves. Currently, estimates vary from between 5000-4000 years ago, for finds from archaeological contexts, and as much as 18,000 based on DNA age estimates. The timing of dingo arrival is important as post arrival they transformed Indigenous societies across mainland Australia and have been implicated in the extinction of a number of animals including the Tasmanian tiger. Here we present the results of direct dating of dingo bones from their oldest known archaeological context, Madura Cave on the Nullarbor Plain. These dates demonstrate that dingoes were in southern Australia by between 3348 and 3081 years ago. We suggest that following their introduction the dingo may have spread extremely rapidly throughout mainland Australia.


Assuntos
Migração Animal , Lobos , Animais , Arqueologia , Austrália , Cavernas , Cronologia como Assunto , Colágeno/química , Extinção Biológica , Feminino , Fósseis , História Antiga , Datação Radiométrica , Natação , Falanges dos Dedos do Pé
19.
Front Microbiol ; 9: 2621, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443242

RESUMO

Ocean acidification (OA) as a result of increased anthropogenic CO2 input into the atmosphere carries consequences for all ocean life. Low pH can cause a shift in coral-associated microbial communities of pCO2-sensitive corals, however, it remains unknown whether the microbial community is also influenced in corals known to be more tolerant to high pCO2/low pH. This study profiles the bacterial communities associated with the tissues of the pCO2-tolerant coral, massive Porites spp., from two natural CO2 seep sites in Papua New Guinea. Amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene revealed that microbial communities remained stable across CO2 seep sites (pH = 7.44-7.85) and adjacent control sites (ambient pH = 8.0-8.1). Microbial communities were more significantly influenced by reef location than pH, with the relative abundance of dominant microbial taxa differing between reefs. These results directly contrast with previous findings that increased CO2 has a strong effect on structuring microbial communities. The stable structure of microbial communities associated with the tissues of massive Porites spp. under high pCO2/low pH conditions confirms a high degree of tolerance by the whole Porites holobiont to OA, and suggest that pH tolerant corals such as Porites may dominate reef assemblages in an increasingly acidic ocean.

20.
Sci Adv ; 4(10): eaau9483, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30402544

RESUMO

Scholars endeavor to understand the relationship between human evolution and climate change. This is particularly germane for Neanderthals, who survived extreme Eurasian environmental variation and glaciations, mysteriously going extinct during a cool interglacial stage. Here, we integrate weekly records of climate, tooth growth, and metal exposure in two Neanderthals and one modern human from southeastern France. The Neanderthals inhabited cooler and more seasonal periods than the modern human, evincing childhood developmental stress during wintertime. In one instance, this stress may have included skeletal mobilization of elemental stores and weight loss; this individual was born in the spring and appears to have weaned 2.5 years later. Both Neanderthals were exposed to lead at least twice during the deep winter and/or early spring. This multidisciplinary approach elucidates direct relationships between ancient environments and hominin paleobiology.


Assuntos
Exposição Ambiental/efeitos adversos , Fósseis , Chumbo/toxicidade , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/fisiologia , Dente/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Datação Radiométrica , Estações do Ano , Dente/efeitos dos fármacos , Dente/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA