Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 620(7976): 994-1000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290482

RESUMO

All-perovskite tandem solar cells promise higher power-conversion efficiency (PCE) than single-junction perovskite solar cells (PSCs) while maintaining a low fabrication cost1-3. However, their performance is still largely constrained by the subpar performance of mixed lead-tin (Pb-Sn) narrow-bandgap (NBG) perovskite subcells, mainly because of a high trap density on the perovskite film surface4-6. Although heterojunctions with intermixed 2D/3D perovskites could reduce surface recombination, this common strategy induces transport losses and thereby limits device fill factors (FFs)7-9. Here we develop an immiscible 3D/3D bilayer perovskite heterojunction (PHJ) with type II band structure at the Pb-Sn perovskite-electron-transport layer (ETL) interface to suppress the interfacial non-radiative recombination and facilitate charge extraction. The bilayer PHJ is formed by depositing a layer of lead-halide wide-bandgap (WBG) perovskite on top of the mixed Pb-Sn NBG perovskite through a hybrid evaporation-solution-processing method. This heterostructure allows us to increase the PCE of Pb-Sn PSCs having a 1.2-µm-thick absorber to 23.8%, together with a high open-circuit voltage (Voc) of 0.873 V and a high FF of 82.6%. We thereby demonstrate a record-high PCE of 28.5% (certified 28.0%) in all-perovskite tandem solar cells. The encapsulated tandem devices retain more than 90% of their initial performance after 600 h of continuous operation under simulated one-sun illumination.

2.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717110

RESUMO

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

3.
Nano Lett ; 23(2): 437-443, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630612

RESUMO

Thanks to the narrow line width and high brightness, colloidal quantum dot (CQD) lasers show promising applications in next-generation displays. However, CQD laser-based displays have yet to be demonstrated because of two challenges in integrating red, green, and blue (RGB) lasers: absorption from red CQDs deteriorates the optical gain of blue and green CQDs, and imbalanced white spectra lack blue lasing due to the high lasing threshold of blue CQDs. Herein, we introduce a facile surfactant-free self-assembly method to assemble RGB CQDs into high-quality whispering-gallery-mode (WGM) RGB lasers with close lasing thresholds among them. Moreover, these RGB lasers can lase nearly independently even when they are closely integrated, and they can construct an ultrawide color space whose color gamut is 105% of that of the BT.2020 standard. These combined strategies allow us to demonstrate the first full-color liquid crystal displays using CQD lasers as the backlight source.

4.
Nature ; 544(7648): 75-79, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321128

RESUMO

Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

5.
Nano Lett ; 22(2): 658-664, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34994571

RESUMO

Spin-polarized charge endows conventional lasers with not only new functionalities but also reduced lasing thresholds thanks to the lifting of spin degeneracy. II-VI and III-V semiconductors have been extensively investigated as spin laser gain mediums; however, the degree of polarization is limited by the light hole and heavy hole degeneracy. Herein, we evaluate the potential of CsPbBr3 nanocrystals─ones that are featured with low band-edge degeneracy and therefore a high degree of polarization as a result of inverted band structure and large spin-orbit coupling─as a gain medium for spin lasers. Our experiment and numerical modeling results reveal that, within the spin relaxation lifetime, the optical gain threshold can be depressed by polarizing the charge using circularly polarized photoexcitation. However, prolonging the spin relaxation lifetime is required to realize a spin laser.

6.
Angew Chem Int Ed Engl ; 62(51): e202313374, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37921234

RESUMO

Combining wide-band gap (WBG) and narrow-band gap (NBG) perovskites with interconnecting layers (ICLs) to construct monolithic all-perovskite tandem solar cell is an effective way to achieve high power conversion efficiency (PCE). However, optical losses from ICLs need to be further reduced to leverage the full potential of all-perovskite tandem solar cells. Here, metal oxide nanocrystal layers anchored with carbazolyl hole-selective-molecules (CHs), which exhibit much lower optical loss, is employed to replace poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT : PSS) as the hole transporting layers (HTLs) in lead-tin (Pb-Sn) perovskite sub-cells and ICLs in all-perovskite tandem solar cells. Optically transparent indium tin oxide nanocrystals (ITO NCs) layers are employed to enhance anchoring of CHs, while a mixture of two CHs is adopted to tune the surface energy-levels of ITO NCs. The optimized mixed Pb-Sn NBG perovskite solar cells demonstrate a high PCE of 23.2 %, with a high short-circuit current density (Jsc ) of 33.5 mA cm-2 . A high PCE of 28.1 % is further obtained in all-perovskite tandem solar cells, with the highest Jsc of 16.7 mA cm-2 to date. Encapsulated tandem solar cells maintain 90 % of their reference point after 500 h of operation at the maximum power point (MPP) under 1-Sun illumination.

8.
Nature ; 537(7620): 382-386, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27487220

RESUMO

Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

9.
Nano Lett ; 21(18): 7732-7739, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515491

RESUMO

Thanks to their extremely large surface-to-volume ratio, colloidal quantum dots are potential high-performance sensing materials. However, previous sensing works using their spontaneous emission suffer from low sensitivities. The absence of an amplification process and the presence of the steric hindrance of long-chain organic ligands are two possible causations. Herein we propose that these two issues can be circumvented by using the amplified spontaneous emission of colloidal quantum dots capped by short-chain inorganic ligands. To exemplify this concept, we performed humidity sensing and observed a ∼31 times enhancement in sensitivity. Meanwhile, we found that the amplified spontaneous emission threshold power was reduced by 34% in a high humidity environment. On the basis of our transient absorption measurements, we attribute these observations to the mitigation of ultrafast subpicosecond trapping processes, which are enabled by the absorption of water molecules.

10.
Nano Lett ; 21(17): 7252-7260, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428068

RESUMO

Blue-emitting heavy-metal free QDs simultaneously exhibiting photoluminescence quantum yield close to unity and narrow emission line widths are essential for next-generation electroluminescence displays, yet their synthesis is highly challenging. Herein, we develop the synthesis of blue-emitting QDs by growing a thin shell of ZnS on ZnSe cores with their size larger than bulk Bohr diameter. The bulk-like size of ZnSe cores enables the emission to locate in the blue region with a narrow emission width close to its intrinsic peak width. The obtained bulk-like ZnSe/ZnS core/shell QDs display high quantum yield of 95% and extremely narrow emission width of ∼9.6 nm. Moreover, the bulk-like size of ZnSe cores reduces the energy level difference between QDs and adjacent layers in LEDs and improves charge transport. The LEDs fabricated with these high-quality QDs show bright pure blue emission with an external quantum efficiency of 12.2% and a relatively long operating lifetime.

11.
J Am Chem Soc ; 143(18): 7013-7020, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929193

RESUMO

Axially, epitaxially organizing nano-objects of distinct compositions and structures into superlattice nanowires enables full utilization of sunlight, readily engineered band structures, and tunable geometric parameters to fit carrier transport, thus holding great promise for optoelectronics and solar-to-fuel conversion. To maximize their efficiency, the general and high-precision synthesis of colloidal axial superlattice nanowires (ASLNWs) with programmable compositions and structures is the prerequisite; however, it remains challenging. Here, we report an axial encoding methodology toward the ASLNW library with precise control over their compositions, dimensions, crystal phases, interfaces, and periodicity. Using a predesigned, editable nanoparticle framework that offers the synthetic selectivity, we are able to chemically decouple adjacent sub-objects in ASLNWs and thus craft them in a controlled approach, yielding a library of distinct ASLNWs. We integrate therein plasmonic, metallic, or near-infrared-active chalcogenides, which hold great potential in solar energy conversion. Such synthetic capability enables a performance boost in target applications, as we report order-of-magnitude enhanced photocatalytic hydrogen production rates using optimized ASLNWs compared to corresponding solo objects. Furthermore, it is expected that such unique superlattice nanowires could bring out new phenomena.

12.
Nature ; 523(7560): 324-8, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26178963

RESUMO

Heteroepitaxy-atomically aligned growth of a crystalline film atop a different crystalline substrate-is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

13.
Nano Lett ; 20(2): 1468-1474, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32004007

RESUMO

We report how the direction of quantum dot (QD) lasing can be engineered by exploiting high-symmetry points in plasmonic nanoparticle (NP) lattices. The nanolaser architecture consists of CdSe-CdS core-shell QD layers conformally coated on two-dimensional square arrays of Ag NPs. Using waveguide-surface lattice resonances (W-SLRs) near the Δ point in the Brillouin zone as optical feedback, we achieved lasing from the gain in CdS shells at off-normal emission angles. Changing the periodicity of the plasmonic lattices enables other high-symmetry points (Γ or M) of the lattice to overlap with the QD shell emission, which facilitates tuning of the lasing direction. We also increased the thickness of the QD layer to introduce higher-order W-SLR modes with additional avoided crossings in the band structure, which expands the selection of cavity modes for any desired lasing emission angle.

14.
J Am Chem Soc ; 142(6): 2956-2967, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31902206

RESUMO

All-inorganic lead halide perovskite nanocrystals (NCs) are potential candidates for fabricating high-performance light-emitting diodes (LEDs) owing to their precisely tunable bandgaps, high photoluminescence (PL) efficiency, and excellent color purities. However, the performance of pure red (630-640 nm) all-inorganic perovskite LEDs is still limited by the halide segregation-induced instability of the electroluminescence (EL) of mixed halide CsPbI3-xBrx NCs. Herein, we report an effective approach to improving the EL stability of pure red all-inorganic CsPbI3-xBrx NC-based LEDs via the passivation of potassium bromide on NCs. By adding potassium oleate to the reaction system, we obtained potassium bromide surface-passivated (KBr-passivated) CsPbI3-xBrx NCs with pure red PL emission and a photoluminescence quantum yield (PLQY) exceeding 90%. We determine that most potassium ions present on the surface of NCs bind with bromide ions and thus demonstrate that potassium bromide surface passivation of NCs can both improve the PL stability and inhibit the halide segregation of NCs. Using KBr-passivated CsPbI3-xBrx NCs as an emitting layer, we fabricated stable and pure red perovskite LEDs with emission at 637 nm, showing a maximum brightness of 2671 cd m-2, maximum external quantum efficiency of 3.55%, and good EL stability. The proposed KBr-passivated NC strategy will open a new avenue for fabricating efficient, stable, and tunable pure color perovskite NC LEDs.

15.
J Am Chem Soc ; 142(8): 3686-3690, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32045234

RESUMO

Highly luminescent inks are desirable for various applications such as decorative coating, art painting, and anticounterfeiting, to name a few. However, present inks display low photoluminescent efficiency requiring a strong excitation light to make them glow. Here, we report a highly luminescent ink based on the copper-iodide/1-Propyl-1,4-diazabicyclo[2.2.2]octan-1-ium (Cu4I6(pr-ted)2) hybrid cluster with a quantum efficiency exceeding 98%. Under the interaction between the Cu4I6(pr-ted)2 hybrid cluster and polyvinylpyrrolidone (PVP), the highly luminescent Cu4I6(pr-ted)2/PVP ink can be facilely prepared via the one-pot solution synthesis. The obtained ink exhibits strong green light emission that originates from the efficient phosphorescence of Cu4I6(pr-ted)2 nanocrystals. Attractively, the ink displays high conversion efficiency for the ultraviolet light to bright green light emission due to its wide Stokes shift, implying great potential for anticounterfeiting and luminescent solar concentrator coating.

16.
Nat Mater ; 16(2): 258-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27842072

RESUMO

Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

17.
Nano Lett ; 17(12): 7191-7195, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077419

RESUMO

Stokes shift, an energy difference between the excitonic absorption and emission, is a property of colloidal quantum dots (CQDs) typically ascribed to splitting between dark and bright excitons. In some materials, e.g., PbS, CuInS2, and CdHgTe, a Stokes shift of up to 200 meV is observed, substantially larger than the estimates of dark-bright state splitting or vibronic relaxations. The shift origin remains highly debated because contradictory signatures of both surface and bulk character were reported for the Stokes-shifted electronic state. Here, we show that the energy transfer among CQDs in a polydispersed ensemble in solution suffices to explain the excess Stokes shift. This energy transfer is primarily due to CQD aggregation and can be substantially eliminated by extreme dilution, higher-viscosity solvent, or better-dispersed colloids. Our findings highlight that ensemble polydispersity remains the primary source of the Stokes shift in CQDs in solution, propagating into the Stokes shift in films and the open-circuit voltage deficit in CQD solar cells. Improved synthetic control can bring notable advancements in CQD photovoltaics, and the Stokes shift continues to provide a sensitive and significant metric to monitor ensemble size distribution.

18.
Nano Lett ; 16(7): 4630-4, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27351104

RESUMO

Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

19.
J Am Chem Soc ; 138(17): 5576-84, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27063512

RESUMO

Heterocrystalline polytype nanostructured semiconductors have been attracting more and more attention in recent years due to their novel structures and special interfaces. Up to now, controlled polytypic nanostructures are mostly realized in II-VI and III-V semiconductors. Herein, we report the synthesis and photoelectrochemical properties of Cu-based ternary I-III-VI2 chalcogenide polytypic nanocrystals, with a focus on polytypic CuInS2 (CIS), CuInSe2 (CISe), and CuIn(S0.5Se0.5)2 alloy nanocrystals. Each obtained polytypic nanocrystal is constructed with a wurtzite hexagonal column and a zinc blende/chalcopyrite cusp, regardless of the S/Se ratio. The growth mechanisms of polytypic CIS and CISe nanocrystals have been studied by time-dependent experiments. The polytypic nanocrystals are solution-deposited on indium-tin oxide glass substrate and used as a photoelectrode, thus showing stable photoelectrochemical activity in aqueous solution. Density functional theory calculation was used to study the electronic structure and the band gap alignment. This versatile synthetic method provides a new route for synthesis of novel polytypic nanostructured semiconductors with unique properties.

20.
Nano Lett ; 15(11): 7691-6, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26509283

RESUMO

The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA