Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(10): 102417, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037967

RESUMO

Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency-approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket-binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the "NC pocket" (residues 50-150) of HγD and one spanning the "NC tail" (residues 56-61 to 168-174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.


Assuntos
Materiais Biomiméticos , Catarata , Cristalino , Chaperonas Moleculares , Agregação Patológica de Proteínas , Salicilanilidas , Xantonas , alfa-Cristalinas , gama-Cristalinas , Animais , Bovinos , Humanos , Camundongos , alfa-Cristalinas/metabolismo , Catarata/tratamento farmacológico , Catarata/prevenção & controle , Catarata/genética , gama-Cristalinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Acoplamento Molecular , Naftalenos/metabolismo , Ácidos Sulfônicos/metabolismo , Salicilanilidas/química , Salicilanilidas/farmacologia , Salicilanilidas/uso terapêutico , Xantonas/química , Xantonas/farmacologia , Xantonas/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/uso terapêutico
2.
Exp Eye Res ; 226: 109306, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372215

RESUMO

Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.


Assuntos
Marcação de Genes , Tamoxifeno , Camundongos , Animais , Camundongos Transgênicos , Tamoxifeno/farmacologia , Recombinases
3.
Langmuir ; 39(31): 11016-11027, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499073

RESUMO

The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.

4.
Environ Sci Technol ; 56(1): 119-130, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34882389

RESUMO

N-containing organic compounds (NOCs) in humic-like substances (HULIS) emitted from biomass burning (BB) and coal combustion (CC) were characterized by ultrahigh-resolution mass spectrometry in the positive electrospray ionization mode. Our results indicate that NOCs include CHON+ and CHN+ groups, which are detected as a substantial fraction in both BB- and CC-derived HULIS, and suggest that not only BB but also CC is the potential important source of NOCs in the atmosphere. The CHON+ compounds mainly consist of reduced nitrogen compounds with other oxygenated functional groups, and straw- and coal-smoke HULIS exhibit a lower degree of oxidation than pine-smoke HULIS. In addition, the NOCs with higher N atoms (N2 and/or N3) generally bear higher modified aromaticity index (AImod) values and are mainly contained in BB HULIS, especially in straw-smoke HULIS, whereas the NOCs with a lower N atom (N1) always have relatively lower AImod values and are the dominant NOCs in CC HULIS. These findings imply that the primary emission from CC may be a significant source of N1 compounds, whereas high N number (e.g., N2-3) compounds could be associated with burning of biomass materials. Further study is warranted to distinguish the NOCs from more sources.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Monitoramento Ambiental , Substâncias Húmicas/análise , Nitrogênio/análise , Compostos de Nitrogênio/análise , Material Particulado/análise
5.
Exp Eye Res ; 210: 108705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34297945

RESUMO

Crystallins, the most prevalent lens proteins, have no turnover throughout the entire human lifespan. These long-lived proteins are susceptible to post-synthetic modifications, including oxidation and glycation, which are believed to be some of the primary mechanisms for age-related cataractogenesis. Thanks to high glutathione (GSH) and ascorbic acid (ASA) levels as well as low oxygen content, the human lens is able to maintain its transparency for several decades. Aging accumulates substantial changes in the human lens, including a decreased glutathione concentration, increased reactive oxygen species (ROS) formation, impaired antioxidative defense capacity, and increased redox-active metal ions, which induce glucose and ascorbic acid degradation and protein glycation. The glycated lens crystallins are either prone to UVA mediated free radical production or they attract metal ion binding, which can trigger additional protein oxidation and modification. This vicious cycle is expected to be exacerbated with older age or diabetic conditions. ASA serves as an antioxidant in the human lens under reducing conditions to protect the human lens from damage, but ASA converts to the pro-oxidative role and causes lens protein damage by ascorbylation in high oxidation or enriched redox-active metal ion conditions. This review is dedicated in honor of Dr. Frank Giblin, a great friend and superb scientist, whose pioneering and relentless work over the past 45 years has provided critical insight into lens redox regulation and glutathione homeostasis during aging and cataractogenesis.


Assuntos
Envelhecimento/fisiologia , Catarata/metabolismo , Glicosilação , Cristalino/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Ácido Ascórbico/farmacologia , Catarata/fisiopatologia , Cristalinas/metabolismo , Glutationa/metabolismo , Humanos , Cristalino/efeitos dos fármacos , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
6.
Hum Mol Genet ; 26(7): 1376-1390, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158580

RESUMO

Gamma glutamyl cysteine ligase (GCL) is the rate-limiting enzyme for intracellular glutathione (GSH) synthesis. The GSH concentration and GCL activity are declining with age in the central nervous system (CNS), and is accompanied by elevated reactive oxygen species (ROS). To study the biological effects of low GSH levels, we disrupted its synthesis both at birth by breeding a Gclc loxP mouse with a thy1-cre mouse (NEGSKO mouse) and at a later age by breeding with a CaMKII-ERT2-Cre (FIGSKO mouse). NEGSKO mice with deficiency of the Gclc in their entire CNS neuronal cells develop at 4 weeks: progressive motor neuron loss, gait problems, muscle denervation and atrophy, paralysis, and have diminished life expectancy. The observed neurodegeneration in Gclc deficiency is of more chronic rather than acute nature as demonstrated by Gclc targeted single-neuron labeling from the inducible Cre-mediated knockout (SLICK) mice. FIGSKO mice with inducible Gclc deficiency in the forebrain at 23 weeks after tamoxifen induction demonstrate profound brain atrophy, elevated astrogliosis and neurodegeneration, particularly in the hippocampus region. FIGSKO mice also develop cognitive abnormalities, i.e. learning impairment and nesting behaviors based on passive avoidance, T-Maze, and nesting behavior tests. Mechanistic studies show that impaired mitochondrial glutathione homeostasis and subsequent mitochondrial dysfunction are responsible for neuronal cell loss. This was confirmed by mitochondrial electron transporter chain activity analysis and transmission electron microscopy that demonstrate remarkable impairment of state 3 respiratory activity, impaired complex IV function, and mitochondrial swollen morphology in the hippocampus and cerebral cortex. These mouse genetic tools of oxidative stress open new insights into potential pharmacological control of apoptotic signaling pathways triggered by mitochondrial dysfunction.


Assuntos
Córtex Cerebral/metabolismo , Glutamato-Cisteína Ligase/genética , Glutationa/metabolismo , Mitocôndrias/genética , Degeneração Neural/genética , Animais , Apoptose/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Córtex Cerebral/ultraestrutura , Glutamato-Cisteína Ligase/deficiência , Glutationa/biossíntese , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Sci Technol ; 53(23): 13607-13617, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682114

RESUMO

Water-soluble organic compounds (WSOC) and methanol-soluble organic compounds (MSOC) in smoke particles emitted from residential coal combustion were characterized by ultrahigh-resolution mass spectrometry. The results showed that the molecular compositions of WSOC and MSOC are different. S-containing compounds (CHOS and CHONS) are found to be the dominant components (65-87%) of the WSOC, whereas CHO and CHON compounds make a great contribution (79-96%) to the MSOC samples. It is worth noting that greater abundance of S-containing compounds was found in smoke produced from coal combustion compared to biomass burning and atmospheric samples. The molecular compositions of WSOC and MSOC also varied significantly depending on the maturity of the coal. The WSOC and MSOC derived from the combustion of low-maturity coal contained a higher proportion of oxidized functional groups but with a lower degree of aromaticity than the compounds derived from the combustion of high-maturity coal. Our findings suggest that organic molecules with a high modified aromaticity index, low O/C ratio, and low polarity showed stronger light absorption. This study also suggests that CHO and CHON compounds significantly contributed to the light absorption of WSOC and MSOC and that the contribution of CHON may be stronger.


Assuntos
Carvão Mineral , Metanol , Ciclotrons , Análise de Fourier , Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray , Água
8.
Environ Sci Technol ; 53(2): 595-603, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30584761

RESUMO

Brown carbon (BrC) fractions, including water-soluble organic carbon (WSOC), water-soluble humic-like substances (HULISw), alkaline soluble organic carbon (ASOC), and methanol soluble organic carbon (MSOC) were extracted from particles emitted from the residential combustion of coal with different geological maturities. The abundances and light absorption properties of these BrC fractions were comprehensively studied. The results showed that the abundances of the different constituents of the BrC fraction varied greatly with the extraction solvent, accounting for 4.3%-46%, 2.3%-23%, 3.2%-14%, and 76%-98% of the total carbon content in particles. The specific UV-vis absorbance (SUVA254) of BrC fractions followed the order of MSOC > ASOC > HULISw > WSOC. The WSOC and MSOC fractions from the combustion of low maturity coal had relatively low SUVA254 and high SR values. The mass absorption efficiencies (MAE365) for ASOC and MSOC were higher than for WSOC, and WSOC and MSOC from low maturity coal combustion had relatively low levels of light absorption. These findings indicated that coal combustion is a potential source of atmospheric BrC and the abundance and light absorption of the coal combustion-derived BrC fractions were strongly dependent on the extraction methods used and the coal maturity rather than the coal shapes.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Carbono , China , Monitoramento Ambiental , Material Particulado
9.
Zhonghua Nan Ke Xue ; 25(5): 392-398, 2019 May.
Artigo em Zh | MEDLINE | ID: mdl-32216222

RESUMO

OBJECTIVE: To investigate the influence of subchronic exposure to low-dose subchronic nano-nickel oxide (NNO) on the reproductive function of male rats and embryonic development of the pregnant rats. METHODS: Fifty normal healthy male SD rats weighing 180-220 g were randomly divided into five groups of equal number, negative control, 4 mg/ml micro-nickel oxide (MNO), and 0.16, 0.8 and 4 mg/ml NNO, those of the latter four groups exposed to MNO or NNO by non-contact intratracheal instillation once every 3 days for 60 days, and then all mated with normal adult female rats in the ratio of 1∶2. After the female animals were confirmed to be pregnant, the males were sacrificed and the weights of the body, testis and epididymis obtained, followed by calculation of the visceral coefficients, determination of epididymal sperm concentration and viability and the nickel contents in the blood and semen by atomic fluorescence spectrometry. The female rats were killed on the 20th day of gestation for counting of the implanted fertilized eggs and live, dead and resorbed fetuses. RESULTS: After 60 days of exposure, the rats of the NNO groups showed no statistically significant differences from those of the negative control and MNO groups in the weights of the body, testis and epididymis or visceral coefficients. Compared with the negative control group, the animals of the 0.8 and 4 mg/ml NNO groups exhibited markedly decreased sperm concentration (ï¼»9.36 ± 0.98ï¼½ vs ï¼»7.49 ± 1.46ï¼½ and ï¼»6.30 ± 1.36ï¼½ ×106/ml, P < 0.05) and viable sperm (ï¼»85.35 ± 9.16ï¼½% vs ï¼»68.26 ± 16.63ï¼½% and ï¼»65.88 ± 14.68ï¼½ %, P < 0.05), increased morphologically abnormal sperm (ï¼»8.30 ± 2.47ï¼½% vs ï¼»13.99 ± 4.87ï¼½% and ï¼»15.38 ± 8.86ï¼½ %, P < 0.05), and elevated rate of dead and resorbed fetuses (1.18% vs 6.89% and 7.37%, P < 0.05), blood nickel content (ï¼»0.13 ± 0.16ï¼½ vs ï¼»0.52 ± 0.34ï¼½ and ï¼»0.82 ± 0.44ï¼½ mg/L, P < 0.05) and semen nickel content (ï¼»0.08 ± 0.13ï¼½ vs ï¼»0.35 ± 0.23ï¼½ and ï¼»0.63 ± 0.61ï¼½ mg/L, P < 0.05). The nickel level in the semen was correlated significantly with that in the blood (r = 0.912, P <0.01), negatively with the rate of viable sperm (r = -0.879, P <0.01) and positively with the percentage of morphologically abnormal sperm (r = -0.898, P <0.01). CONCLUSIONS: Sixty-day exposure to nano-nickel oxide at 0.8 and 4 mg/ml can produce reproductive toxicity in male rats and result in fetal abnormality in the females, while that at 0.16 mg/ml has no significant toxic effect on the reproductive function of the males.


Assuntos
Epididimo/fisiopatologia , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Testículo/fisiopatologia , Animais , Relação Dose-Resposta a Droga , Epididimo/efeitos dos fármacos , Feminino , Masculino , Tamanho do Órgão , Gravidez , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Motilidade dos Espermatozoides , Espermatozoides/patologia , Testículo/efeitos dos fármacos , Testes de Toxicidade Subcrônica
10.
Cell Physiol Biochem ; 51(5): 2324-2340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537738

RESUMO

BACKGROUND/AIMS: Circular RNAs (circRNAs) are key regulators in the development and progression of human cancers, however its role in non-small cell lung cancer (NSCLC) tumorigenesis is not well understood. The aim of this study is to identify the expression level of circPVT1 in NSCLC and further investigated its functional relevance with NSCLC progression both in vitro and in vivo. METHODS: Quantative real-time PCR was used for the measurement of circPVT1 in NSCLC specimens and cell lines. Fluorescence in situ hybridization analysis (FISH) assay was used for the identification of sublocation of circPVT1 in NSCLC cells. Bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to verify the binding of c-Fos at circPVT1 promoter region, and the direct interaction between circPVT1 and miR-125b. Gain- or loss-function assays were performed to evaluate the effects of circPVT1 on cell proliferation and invasion. Western blot and immunohistochemistry assays were performed to detect the protein levels involved in E2F2 pathway. RESULTS: We found that circPVT1 was upregulated in NSCLC specimens and cells. The transcription factor c-Fos binded to the promoter region of circPVT1, resulting in the overexpression of circPVT1 in NSCLC. Knockdown of circPVT1 suppressed NSCLC cell proliferation, migration and invasion, and increased apoptosis. In addition, circPVT1 mediated NSCLC progression via the regulation of E2F2 signaling pathway. More importantly, circPVT1 was predominantly abundant in the cytoplasm of NSCLC cells, and circPVT1 could serve as a competing endogenous RNA to regulate E2F2 expression and tumorigenesis in a miR-125b-dependent manner, which is further verified by using an in vivo xenograft model. CONCLUSION: circPVT1 promotes NSCLC cell growth and invasion, and may serve as a promising therapeutic target for NSCLC patients. Therefore, silence of circPVT1 could be a future direction to develop a novel treatment strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Fator de Transcrição E2F2/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F2/genética , Éxons , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Circular , RNA Longo não Codificante/genética , Transdução de Sinais
11.
Am J Pathol ; 187(11): 2399-2412, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28827139

RESUMO

The epithelial-mesenchymal transition (EMT) process plays a pivotal role in the pathogenesis of posterior capsular opacification because of remnant lens epithelial cell proliferation, migration, and transformation after cataract surgery. The latter, we hypothesize, may result in posterior capsule wrinkling and opacification because of a profound change in the lens growth environment via a 1000-fold reduction of extracellular glutathione (GSH) levels. To test this hypothesis, we investigated the EMT process in cell culture and GSH biosynthesis deficiency mouse models. Our data indicate a dramatic increase of pro-EMT markers, such as type I collagen, α-smooth muscle actin, vimentin, and fibronectin, under conditions of lens GSH depletion. Further study suggests that decreased GSH triggers the Wnt/ß-catenin signal transduction pathway, independent of transforming growth factor-ß. Equally important, the antioxidants N-acetyl cysteine and GSH ethyl ester could significantly attenuate the EMT signaling stimulated by decreased GSH levels. These findings were further confirmed by mock cataract surgery in both gamma glutamyl-cysteine ligase, catalytic subunit, and gamma glutamyl-cysteine ligase, modifier subunit, knockout mouse models. Remarkably, increased EMT marker expression, ß-catenin activation, and translocation into the nucleus were found in both knockout mice compared with the wild type, and such increased expression could be significantly attenuated by N-acetyl cysteine or GSH ethyl ester treatment. This study, for the first time we believe, links oxidative stress to lens fibrosis and posterior capsular opacification formation via EMT-mediated mechanisms.


Assuntos
Catarata/terapia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Glutationa/metabolismo , Cristalino/metabolismo , Estresse Oxidativo/fisiologia , Animais , Catarata/metabolismo , Proliferação de Células/fisiologia , Humanos , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
12.
Environ Sci Technol ; 52(5): 2575-2585, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29385328

RESUMO

Water-soluble humic like substances (HULIS) in smoke particles emitted from combustion of biomass materials and coal were characterized by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. The formulas identified were classified into four main groups: CHO, CHON, CHOS, and CHONS. The average H/C and O/C ratios are 1.13-1.33, 1.01-1.13, 1.26-1.48, 1.09-1.24 and 0.21-0.41, 0.27-0.45, 0.41-0.46, 0.44-0.61 for the CHO, CHON, CHOS, and CHONS groups, respectively. The CHO compound was the predominant component (43%-72%) of the smoke HULIS from biomass burning (BB) and coal combustion, followed by the CHON group for BB-smoke HULIS and the S-containing groups (i.e., CHOS and CHONS) for coal-smoke HULIS. These results indicate that the primary HULIS emitted from biomass burning contain a high abundance of CHON species, which appear to be made up mainly of oxidized nitrogen functional groups such as nitro compounds and/or organonitrates. The coal-smoke HULIS contained more compounds with relatively low molecular weight and high aromaticity index (AImod). They were significantly enriched in S-containing compounds with high double bond equivalent (≥4), and O/S ratios suggest that they are most likely made up of aromatic organosulfates and nitrooxy organosulfates that are usually found in polluted atmospheres. These findings imply that the primary emissions from combustion of biomass and coal fuels are potential sources of water-soluble HULIS in an atmospheric matrix and that coal combustion is an especially important source of sulfate compounds.


Assuntos
Carvão Mineral , Água , Biomassa , Ciclotrons , Análise de Fourier , Substâncias Húmicas , Espectrometria de Massas , Fumaça , Espectrometria de Massas por Ionização por Electrospray
13.
Exp Eye Res ; 156: 103-111, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27373973

RESUMO

Cataract is the major cause of blindness worldwide. The WHO has estimated around 20 million people have bilateral blindness from cataract, and that number is expected to reach 50 million in 2050. The cataract surgery is currently the main treatment approach, though often associated with complications, such as Posterior Capsule Opacification (PCO)-also known as secondary cataract. The lens is an avascular ocular structure equipped with an unusually high level of glutathione (GSH), which plays a vital role in maintaining lens transparency by regulating lenticular redox state. The lens epithelium and outer cortex are thought to be responsible for providing the majority of lens GSH via GSH de novo synthesis, assisted by a continuous supply of constituent amino acids from the aqueous humor, as well as extracellular GSH recycling from the gamma-glutamyl cycle. However, when de novo synthesis is impaired, in the presence of low GSH levels, as in the aging human lens, compensatory mechanisms exist, suggesting that the lens is able to uptake GSH from the surrounding ocular tissues. However, these uptake mechanisms, and the GSH source and its origin, are largely unknown. The lens nucleus does not have the ability to synthesize its own GSH and fully relies on transport from the outer cortex by yet unknown mechanisms. Understanding how aging reduces GSH levels, particularly in the lens nucleus, how it is associated with age-related nuclear cataract (ARNC), and how the lens compensates for GSH loss via external uptake should be a major research priority. The intent of this review, which is dedicated to the memory of David C. Beebe, is to summarize our current understanding of lens GSH homeostasis and highlight discrepancies and gaps in knowledge that stand in the way of pharmacologically minimizing the impact of declining GSH content in the prevention of age-related cataract.


Assuntos
Catarata/prevenção & controle , Glutationa/metabolismo , Homeostase/fisiologia , Cristalino/metabolismo , Envelhecimento/fisiologia , Animais , Humor Aquoso/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Corpo Vítreo/metabolismo
14.
Mol Cell Proteomics ; 14(12): 3211-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453637

RESUMO

Low glutathione levels are associated with crystallin oxidation in age-related nuclear cataract. To understand the role of cysteine residue oxidation, we used the novel approach of comparing human cataracts with glutathione-depleted LEGSKO mouse lenses for intra- versus intermolecular disulfide crosslinks using 2D-PAGE and proteomics, and then systematically identified in vivo and in vitro all disulfide forming sites using ICAT labeling method coupled with proteomics. Crystallins rich in intramolecular disulfides were abundant at young age in human and WT mouse lens but shifted to multimeric intermolecular disulfides at older age. The shift was ∼4x accelerated in LEGSKO lens. Most cysteine disulfides in ß-crystallins (except ßA4 in human) were highly conserved in mouse and human and could be generated by oxidation with H(2)O(2), whereas γ-crystallin oxidation selectively affected γC23/42/79/80/154, γD42/33, and γS83/115/130 in human cataracts, and γB79/80/110, γD19/109, γF19/79, γE19, γS83/130, and γN26/128 in mouse. Analysis based on available crystal structure suggests that conformational changes are needed to expose Cys42, Cys79/80, Cys154 in γC; Cys42, Cys33 in γD, and Cys83, Cys115, and Cys130 in γS. In conclusion, the ß-crystallin disulfidome is highly conserved in age-related nuclear cataract and LEGSKO mouse, and reproducible by in vitro oxidation, whereas some of the disulfide formation sites in γ-crystallins necessitate prior conformational changes. Overall, the LEGSKO mouse model is closely reminiscent of age-related nuclear cataract.


Assuntos
Envelhecimento/metabolismo , Catarata/metabolismo , Dissulfetos/química , Glutationa/deficiência , beta-Cristalinas/química , beta-Cristalinas/isolamento & purificação , Animais , Linhagem Celular , Cisteína/química , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Cristalino/citologia , Cristalino/metabolismo , Camundongos , Oxirredução , Conformação Proteica , Proteômica/métodos
15.
J Biol Chem ; 289(24): 17111-23, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24798334

RESUMO

Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320-400 nm, 100 milliwatts/cm(2), 45 min to 2 h), young human lenses (20-36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans.


Assuntos
Ácido Ascórbico/metabolismo , Catarata/metabolismo , Cristalinas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Cinurenina/efeitos da radiação , Cristalino/efeitos da radiação , Raios Ultravioleta , Animais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Camundongos , Oxirredução
16.
Clin Chem Lab Med ; 52(1): 21-32, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23787467

RESUMO

Advanced glycation end products (AGEs) represent a family of protein, peptide, amino acid, nucleic acid and lipid adducts formed by the reaction of carbonyl compounds derived directly or indirectly from glucose, ascorbic acid and other metabolites such as methylglyoxal. AGE formation in diabetes is of growing importance for their role as markers and potential culprits of diabetic complications, in particular retinopathy, nephropathy and neuropathy. Development of sensitive and specific assays utilizing liquid chromatography mass spectrometry with isotope dilution method has made it possible to detect and quantitate non-UV active AGEs such as carboxymethyl-lysine and glucosepane, the most prevalent AGE and protein crosslink of the extracellular matrix. Below we review studies on AGE formation in two skin biopsies obtained near the closeout of the Diabetes Control and Complications Trial (DCCT), one of which was processed in 2011 for assay of novel AGEs. The results of these analyses show that while several AGEs are associated and predict complication progression, the glucose/fructose-lysine/glucosepane AGE axis is one of the most robust markers for microvascular disease, especially retinopathy, in spite of adjustment for past or future average glycemia. Yet overall little biological and clinical information is available on glucosepane, making this review a call for data in a field of growing importance for diabetes and chronic metabolic diseases of aging.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Animais , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Complicações do Diabetes/etiologia , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Produtos Finais de Glicação Avançada/química , Humanos , Fatores de Risco , Pele/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
17.
Sci Total Environ ; 912: 169290, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104832

RESUMO

Biomass burning (BB) releases large amounts of water-soluble organic carbon (WSOC), which would undergo heterogenous oxidation processes that induce transformations in both molecular structures and compositions within BB WSOC. This study designed an aqueous oxidation initiated by OH radicals in the absence of light for WSOC extracted from smoke particles generated by burning of corn straw and fir wood. The BB WSOC was comprehensively characterized using a combination of UV-visible spectra, excitation-emission matrix fluorescence in conjunction with parallel factor analysis (EEM-PARAFAC), high-performance size exclusion chromatography (HPSEC), and high-resolution mass spectrometry (HRMS) analyses. Over the course of oxidation, both chromophores and fluorophores exhibited gradual decreases. Moreover, EEM-PARAFAC revealed a preferential degradation of larger-sized protein-like/phenol-like organic matters, accompanied by the accumulation and/or formation of humic-like substances in aged BB WSOC. HPSEC analysis showed notable changes in molecular weight (MW) distributions for both types of BB WSOC during oxidation. Specifically, high MW species (>1 kDa) displayed a tendency to form along with oxidation, possibly attributed to the formation of assemblies via intermolecular weak forces. After oxidation, evidence of CHO compound degradation and enrichment/formation of CHON compounds was observed for both types of BB WSOC. Remarkably, the resistant, degraded and produced molecules for BB WSOC were dominated by CHO (38-73 %) and lignin-like molecules (41-47 %), suggesting diverse responses to oxidation within these two groups. Furthermore, polyphenols experienced selective degradation, while CHON, aliphatic and poly-aromatic molecules tended to form during the oxidation process for both types of BB WSOC. In summary, this study provides a comprehensive understanding of the molecular-level transformations undergone by BB WSOC during dark aqueous OH oxidation. The findings significantly contribute to our insights into atmospheric evolution of BB WSOC, thereby playing a crucial role in accurately assessing their effects within climate models and informing policy decisions.

18.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669339

RESUMO

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Assuntos
Envelhecimento , Domínio Catalítico , Catarata , Glutamato-Cisteína Ligase , Glutationa , Cristalino , Catarata/patologia , Catarata/genética , Catarata/metabolismo , Animais , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Camundongos , Glutationa/metabolismo , Cristalino/metabolismo , Cristalino/patologia , Envelhecimento/metabolismo , Humanos , Modelos Animais de Doenças , Mutação , Técnicas de Introdução de Genes
19.
Chemosphere ; 338: 139517, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454992

RESUMO

Atmospheric brown carbon (BrC) contain amounts of organic species, but their molecular weight (MW) distributions is still poorly understood. This study applied high-performance size exclusion chromatography (HPSEC) coupled with a diode array detector (DAD) and fluorescence detector (FLD) to characterize the MW distributions of typical chromophores and fluorophores within water-soluble BrC. The investigation focused on the spring season, encompassing both typical urban and rural aerosols. Our results showed that chromophores (at 254 and 365 nm), and humic-like and protein-like fluorophores identified by excitation-emission matrix parallel factor analysis (EEM-PARAFAC) within BrC were broadly distributed along the MW continuum (∼50-20,000 Da). This suggests that BrC mainly comprises complex chromophores and fluorophores with heterogeneous molecular sizes. High-MW (HMW, >1 kDa) species (66%-74%) dominated the chromophores at 254 and 365 nm. However, the latter chromophores were enriched with more HMW species. This result suggested that the HMW chromophores might contribute more to BrC absorption at longer wavelengths. The PARAFAC-derived fluorescent components also exhibited different MW distributions. Three humic-like substances (HULIS) were all dominated by HMW fractions (51%-74%), but protein-like fluorescent component (PLOM) enriched low-MW (LMW, <1 kDa) species (60%-66%). Furthermore, the molecular size (i.e., weight-averaged and number-averaged MW) and the ratios between HMW and LMW species decreased in the order highly-oxygenated HULIS > less-oxygenated HULIS > PLOM, indicating that the fluorophores with longer Em were generally related to larger MW. To our knowledge, this is the first report on the molecular size of individual fluorescent components within aerosol BrC. The results obtained here enhanced our knowledge of heterogeneous composition, complex physicochemical properties, and potential atmospheric fates of aerosol BrC.


Assuntos
Carbono , Água , Carbono/análise , Peso Molecular , Água/química , Cromatografia em Gel , Substâncias Húmicas/análise , Corantes Fluorescentes/análise , Aerossóis/análise , Monitoramento Ambiental
20.
Environ Sci Pollut Res Int ; 30(13): 36023-36032, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542281

RESUMO

In this study, Chlorella vulgaris, Ganoderma lucidum, and endophytic bacteria were co-cultivated with the stimulation of strigolactone analogs GR24 to prepare pellets. During the purification of biogas slurry and biogas, multi-walled carbon nanotubes (MWCNTs) were introduced to enhance the removal efficiencies of nutrients and CO2. The results showed that both GR24 and MWCNTs affected the purification of biogas slurry and biogas. The maximum chemical oxygen demand, total nitrogen, total phosphorus, and CO2 removal efficiencies of the Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts were 82.57 ± 7.96% (P < 0.05), 82.14 ± 7.87% (P < 0.05), 84.27 ± 7.96% (P < 0.05), and 63.93 ± 6.22% (P < 0.05), respectively, with the induction of 10-9 M GR24 and 1 mg L-1 MWCNTs. Moreover, the growth and photosynthetic performance of the symbionts were consistent with the removal effects. The Chlorella vulgaris-Ganoderma lucidum-endophytic bacterial symbionts obtained high growth rates and enzyme activity with the maximum growth rate of 0.365 ± 0.03 d-1, mean daily productivity of 0.182 ± 0.016 g L-1 d-1, and carbonic anhydrase activity of 31.07 ± 2.75 units, respectively. These results indicated that an appropriate concentration of GR24 and MWCNTs could promote the growth of symbionts, reinforce the purification effects of biogas slurry and biogas, and provide a new idea for the simultaneous purification of wastewater and biogas.


Assuntos
Chlorella vulgaris , Microalgas , Nanotubos de Carbono , Reishi , Biocombustíveis/microbiologia , Dióxido de Carbono , Biomassa , Nutrientes , Bactérias , Fungos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA