RESUMO
Although they are classically viewed as continuously recirculating through the lymphoid organs and blood, lymphocytes also establish residency in non-lymphoid tissues, most prominently at barrier sites, including the mucosal surfaces and skin. These specialized tissue-resident lymphocyte subsets span the innate-adaptive continuum and include innate lymphoid cells (ILCs), unconventional T cells (e.g., NKT, MAIT, γδ T cells, and CD8αα(+) IELs), and tissue-resident memory T (T(RM)) cells. Although these diverse cell types differ in the particulars of their biology, they nonetheless exhibit important shared features, including a role in the preservation of tissue integrity and function during homeostasis, infection, and non-infectious perturbations. In this Review, we discuss the hallmarks of tissue-resident innate, innate-like, and adaptive lymphocytes, as well as their potential functions in non-lymphoid organs.
Assuntos
Linfócitos/citologia , Linfócitos/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Memória Imunológica , Infecções/imunologia , Linfócitos/classificação , Linfócitos T/citologia , Linfócitos T/imunologiaRESUMO
Small immune complexes cause type III hypersensitivity reactions that frequently result in tissue injury. The responsible mechanisms, however, remain unclear and differ depending on target organs. Here, we identify a kidney-specific anatomical and functional unit, formed by resident macrophages and peritubular capillary endothelial cells, which monitors the transport of proteins and particles ranging from 20 to 700 kDa or 10 to 200 nm into the kidney interstitium. Kidney-resident macrophages detect and scavenge circulating immune complexes "pumped" into the interstitium via trans-endothelial transport and trigger a FcγRIV-dependent inflammatory response and the recruitment of monocytes and neutrophils. In addition, FcγRIV and TLR pathways synergistically "super-activate" kidney macrophages when immune complexes contain a nucleic acid. These data identify a physiological function of tissue-resident kidney macrophages and a basic mechanism by which they initiate the inflammatory response to small immune complexes in the kidney.
Assuntos
Doenças do Complexo Imune/imunologia , Rim/citologia , Rim/imunologia , Macrófagos/imunologia , Animais , Complexo Antígeno-Anticorpo , Células Endoteliais , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Monócitos/citologia , Monócitos/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Receptores de IgG/imunologiaRESUMO
Innate lymphoid cells (ILCs) are generated early during ontogeny and persist predominantly as tissue-resident cells. Here, we examined how ILCs are maintained and renewed within tissues. We generated a single cell atlas of lung ILC2s and found that Il18r1+ ILCs comprise circulating and tissue-resident ILC progenitors (ILCP) and effector-cells with heterogeneous expression of the transcription factors Tcf7 and Zbtb16, and CD103. Our analyses revealed a continuous differentiation trajectory from Il18r1+ ST2- ILCPs to Il18r- ST2+ ILC2s, which was experimentally validated. Upon helminth infection, recruited and BM-derived cells generated the entire spectrum of ILC2s in parabiotic and shield chimeric mice, consistent with their potential role in the renewal of tissue ILC2s. Our findings identify local ILCPs and reveal ILCP in situ differentiation and tissue adaptation as a mechanism of ILC maintenance and phenotypic diversification. Local niches, rather than progenitor origin, or the developmental window during ontogeny, may dominantly imprint ILC phenotypes in adult tissues.
Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Células Progenitoras Linfoides/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-18/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína com Dedos de Zinco da Leucemia Promielocítica/imunologia , Transdução de Sinais/imunologia , Análise de Célula Única/métodos , Fator 1 de Transcrição de Linfócitos T/imunologia , Fatores de Transcrição/imunologiaRESUMO
Regulatory T cells (Treg cells), which have abundant expression of the interleukin 2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature indicates a key role for a simple network based on the consumption of IL-2 by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage-specification factor Foxp3, which has confounded experimental efforts to understand the role of IL-2R expression and signaling in the suppressor function of Treg cells. Using genetic gain- and loss-of-function approaches, we found that capture of IL-2 was dispensable for the control of CD4+ T cells but was important for limiting the activation of CD8+ T cells, and that IL-2R-dependent activation of the transcription factor STAT5 had an essential role in the suppressor function of Treg cells separable from signaling via the T cell antigen receptor.
Assuntos
Receptores de Interleucina-2/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Feminino , Imunomodulação , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Natural killer (NK) cells are innate lymphocytes that display features of adaptive immunity during viral infection. Biallelic mutations in IRF8 have been reported to cause familial NK cell deficiency and susceptibility to severe viral infection in humans; however, the precise role of this transcription factor in regulating NK cell function remains unknown. Here, we show that cell-intrinsic IRF8 was required for NK-cell-mediated protection against mouse cytomegalovirus infection. During viral exposure, NK cells upregulated IRF8 through interleukin-12 (IL-12) signaling and the transcription factor STAT4, which promoted epigenetic remodeling of the Irf8 locus. Moreover, IRF8 facilitated the proliferative burst of virus-specific NK cells by promoting expression of cell-cycle genes and directly controlling Zbtb32, a master regulator of virus-driven NK cell proliferation. These findings identify the function and cell-type-specific regulation of IRF8 in NK-cell-mediated antiviral immunity and provide a mechanistic understanding of viral susceptibility in patients with IRF8 mutations.
Assuntos
Imunidade Adaptativa/imunologia , Fatores Reguladores de Interferon/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Animais , Infecções por Herpesviridae/imunologia , Camundongos , Muromegalovirus/imunologiaRESUMO
Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production.
Assuntos
Tecido Adiposo/imunologia , Resistência à Insulina/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Proteínas com Domínio T/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/metabolismo , Proteínas com Domínio T/genéticaRESUMO
Nanobodies, which represent the next generation of antibodies due to their unique properties, face a significant limitation in their poor physical adsorption on solid supports. In this study, we successfully discovered polystyrene binding nanobodies from a synthetic nanobody library. Notably, bivalent nanobody B2 exhibited high affinity for polystyrene (0.7 nM for ELISA saturation binding analysis and 15.6 nM for isothermal titration calorimetry), displaying a pH-dependent behavior. Remarkably, hydrophobic and electrostatic interactions contribute minimally to the binding process. Molecular modeling provided insights into the interaction between B2 and polystyrene, revealing that the Trp51 residue within the CDR2 loop formed an aromatic H-bond with polystyrene at a distance of 2.74 Å, thus explaining the observed reduction in B2 affinity caused by Trp51 mutations. To explore B2's potential in protein immobilization, we constructed a bispecific nanobody by fusing B2 to an anticarcinoembryonic antigen nanobody 11C12, which cannot be immobilized on polystyrene through passive adsorption. Remarkably, the fusion construct achieved effective immobilization on polystyrene within 5 min by passing the need for periplasmic protein purification despite its low expression level. Moreover, the fusion construct demonstrated excellent linearity in the chemiluminescent enzyme immunoassay. For the first time, this study reports a simplified and seamless platform for the oriented immobilization of nanobody. Importantly, the entire process eliminated the need for protein purification, enabling efficient and rapid immobilization of fusion proteins directly from crude cell extracts, even when the expression level was low. Our developed process dramatically reduced the processing time from 2.5 days to just 5 min.
Assuntos
Anticorpos de Domínio Único , Poliestirenos , Imunoensaio , Ensaio de Imunoadsorção Enzimática , AnticorposRESUMO
Reflection and refraction of waves occur at the interface between two different media. These two fundamental interfacial wave phenomena form the basis of fabricating various wave components, such as optical lenses. Classical refraction-now referred to as positive refraction-causes the transmitted wave to appear on the opposite side of the interface normal compared to the incident wave. By contrast, negative refraction results in the transmitted wave emerging on the same side of the interface normal. It has been observed in artificial materials1-5, following its theoretical prediction6, and has stimulated many applications including super-resolution imaging7. In general, reflection is inevitable during the refraction process, but this is often undesirable in designing wave functional devices. Here we report negative refraction of topological surface waves hosted by a Weyl phononic crystal-an acoustic analogue of the recently discovered Weyl semimetals8-12. The interfaces at which this topological negative refraction occurs are one-dimensional edges separating different facets of the crystal. By tailoring the surface terminations of the Weyl phononic crystal, constant-frequency contours of surface acoustic waves can be designed to produce negative refraction at certain interfaces, while positive refraction is realized at different interfaces within the same sample. In contrast to the more familiar behaviour of waves at interfaces, unwanted reflection can be prevented in our crystal, owing to the open nature of the constant-frequency contours, which is a hallmark of the topologically protected surface states in Weyl crystals8-12.
RESUMO
OBJECTIVES: To characterize the properties of cutaneous defects created by energy-based devices using optical coherence tomography. MATERIALS AND METHODS: Radiofrequency (RF) microneedling and non-ablative fractional laser (NAFL) treatment were performed in vivo with various parameters. Following treatment, optical coherence tomography (OCT) was used to image and measure cutaneous defects at multiple time points over a 24 h period. RESULTS: Channel-like cutaneous defects were visible with OCT following bipolar RF microneedling and NAFL treatment. Using a double pulse technique with RF microneedling yielded a greater number of defects visible with OCT, as well as defects that were deeper and more durable over time. Following treatment with 1927 nm thulium fiber laser, the average diameter of the defects was greater when the energy level was 20 mJ as compared to 10 mJ (0.33 mm vs. 0.27 mm, p < 0.01). CONCLUSIONS: Cutaneous defects were observed following both RF microneedling and NAFL treatment. Properties of the cutaneous defects varied based on device, treatment setting, and technique, which may be useful in guiding further study of device-assisted drug delivery.
Assuntos
Agulhas , Tomografia de Coerência Óptica , Humanos , Pele/efeitos da radiação , Pele/diagnóstico por imagem , Lasers de Estado Sólido/uso terapêutico , Terapia por Radiofrequência , Indução Percutânea de ColágenoRESUMO
Topological features embedded in ancient braiding and knotting arts endow significant impacts on our daily life and even cutting-edge science. Recently, fast growing efforts are invested to the braiding topology of complex Bloch bands in non-Hermitian systems. This new classification of band topology goes far beyond those established in Hermitian counterparts. Here, we present the first acoustic realization of the topological non-Hermitian Bloch braids, based on a two-band model easily accessible for realizing any desired knot structure. The non-Hermitian bands are synthesized by a simple binary cavity-tube system, where the long-range, complex-valued, and momentum-resolved couplings are accomplished by a well-controlled unidirectional coupler. In addition to directly visualizing various two-band braiding patterns, we unambiguously observe the highly elusive topological phase transitions between them. Not only do our results provide a direct demonstration for the non-Hermitian band topology, but also the experimental techniques open new avenues for designing unconventional acoustic metamaterials.
Assuntos
Acústica , Movimento (Física) , Transição de FaseRESUMO
Inspired by the newly emergent valleytronics, great interest has been attracted to the topological valley transport in classical metacrystals. The presence of nontrivial domain-wall states is interpreted with a concept of valley Chern number, which is well defined only in the limit of small band gap. Here, we propose a new visual angle to track the intricate valley topology in classical systems. Benefiting from the controllability of our acoustic metacrystals, we construct Weyl points in synthetic three-dimensional momentum space through introducing an extra structural parameter (rotation angle here). As such, the two-dimensional valley-projected band topology can be tracked with the strictly quantized topological charge in three-dimensional Weyl crystal, which features open surface arcs connecting the synthetic Weyl points and gapless chiral surface states along specific Weyl paths. All theoretical predictions are conclusively identified by our acoustic experiments. Our findings may promote the development of topological valley physics, which is less well defined yet under hot debate in multiple physical disciplines.
RESUMO
Recently, higher-order topological insulators have been attracting extensive interest. Unlike the conventional topological insulators that demand bulk gap closings at transition points, the higher-order band topology can be changed without bulk closure and exhibits as an obstruction of higher-dimensional boundary states. Here, we report the first experimental realization of three-dimensional surface-obstructed topological insulators with using acoustic crystals. Our acoustic measurements demonstrate unambiguously the emergence of one-dimensional topological hinge states in the middle of the bulk and surface band gaps, as a direct manifestation of the higher-order band topology. Together with comparative measurements for the trivial and phase-transition-point insulators, our experimental data conclusively evidence the unique bulk-boundary physics for the surface-obstructed band topology. That is, the topological phase transition is determined by the closure of the surface gap, rather than by closing the bulk gap. Our study might spur on new activities to deepen the understanding of such elusive topological phases.
RESUMO
In the presence of gauge symmetry, common but not limited to artificial crystals, the algebraic structure of crystalline symmetries needs to be projectively represented, giving rise to unprecedented topological physics. Here, we demonstrate this novel idea by exploiting a projective translation symmetry and constructing a variety of Möbius-twisted topological phases. Experimentally, we realize two Möbius insulators in acoustic crystals for the first time: a two-dimensional one of first-order band topology and a three-dimensional one of higher-order band topology. We observe unambiguously the peculiar Möbius edge and hinge states via real-space visualization of their localiztions, momentum-space spectroscopy of their 4π periodicity, and phase-space winding of their projective translation eigenvalues. Not only does our work open a new avenue for artificial systems under the interplay between gauge and crystalline symmetries, but it also initializes a new framework for topological physics from projective symmetry.
RESUMO
Nanobodies show a great potential in biomedical and biotechnology applications. Bacterial expression is the most widely used expression system for nanobody production. However, the yield of nanobodies is relatively low compared to that of eukaryotic systems. In this study, the repetitive amino acid sequence motifs (GAGAGS) found in silk fibroin protein (SFP) were developed as a novel fusion tag (SF-tag) to enhance the expression of nanobodies in Escherichia coli. SF-tags of 1 to 5 hexapeptide units were fused to the C-terminus of 4G8, a nanobody against human epididymis protein 4 (HE4). The protein yield of 4G8 variants was increased by the extension of hexapeptide units and achieved a 2.5 ~ 7.1-fold increase compared with that of untagged 4G8 (protein yield of 4G8-5C = 0.307 mg/g vs that of untagged 4G8 = 0.043 mg/g). Moreover, the fusion of SF-tags not only had no significant effect on the affinity of 4G8, but also showed a slight increase in the thermal stability of SF-tag-fused 4G8 variants. The fusion of SF-tags increased the transcription of 4G8 by 2.3 ~ 7.0-fold, indicating SF-tags enhanced the protein expression at the transcriptional level. To verify the applicability of the SF-tags for other nanobody expression, we further investigated the protein expression of two other anti-HE4 nanobodies 1G8 and 3A3 upon fusion with the SF-tags. Results indicated that the SF-tags enhanced the protein expression up to 5.2-fold and 5.7-fold for 1G8 and 3A3, respectively. For the first time, this study reported a novel and versatile fusion tag system based on the SFP for improving nanobody expression in Escherichia coli, which may enhance its potential for wider applications.Key points⢠A silk fibroin protein-based fusion tag (SF-tag) was developed to enhance the expression of nanobodies in Escherichia coli.⢠The SF-tag enhanced the nanobody expression at the transcriptional level.⢠The fusion of SF-tag had no significant effect on the affinity of nanobodies and could slightly increase the thermal stability of nanobodies.
Assuntos
Fibroínas , Anticorpos de Domínio Único , Biotecnologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroínas/genética , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Domínio Único/químicaRESUMO
A reverberating environment is a common complex medium for airborne sound, with familiar examples such as music halls and lecture theaters. The complexity of reverberating sound fields has hindered their meaningful control. Here, by combining acoustic metasurface and adaptive wavefield shaping, we demonstrate the versatile control of reverberating sound fields in a room. This is achieved through the design and the realization of a binary phase-modulating spatial sound modulator that is based on an actively reconfigurable acoustic metasurface. We demonstrate useful functionalities including the creation of quiet zones and hotspots in a typical reverberating environment.
RESUMO
MicroRNAs (miRNAs) play important roles in prostate cancer development. However, it remains unclear how individual miRNAs contribute to the initiation and progression of prostate cancer. Here we show that a basal layer-enriched miRNA is required for prostate tumorigenesis. We identify miR-205 as the most highly expressed miRNA and enriched in the basal cells of the prostate. Although miR-205 is not required for normal prostate development and homeostasis, genetic deletion of miR-205 in a Pten null tumor model significantly compromises tumor progression and does not promote metastasis. In Pten null basal cells, loss of miR-205 attenuates pAkt levels and promotes cellular senescence. Furthermore, although overexpression of miR-205 in prostate cancer cells with luminal phenotypes inhibits cell growth in both human and mouse, miR-205 has a minimal effect on the growth of a normal human prostate cell line. Taken together, we have provided genetic evidence for a requirement of miR-205 in the progression of Pten null-induced prostate cancer.
Assuntos
Transformação Celular Neoplásica/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologiaRESUMO
Recently, intense efforts have been devoted to realizing classical analogues of various topological phases of matter. In this Letter, we explore the intriguing Weyl physics by a simple one-dimensional sonic crystal, in which two extra structural parameters are combined to construct a synthetic three-dimensional space. Based on our ultrasonic experiments, we have not only observed the synthetic Weyl points, but also probed the novel reflection phase singularity that connects inherently with the topological robustness of Weyl points. The presence of topologically nontrivial interface modes has been demonstrated further. As the first realization of topological acoustics in synthetic space, our study exhibits great potential of probing high-dimensional topological phenomena by such easily fabricated and detected low-dimension acoustic systems.
RESUMO
Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.
Assuntos
Butiratos/metabolismo , Diferenciação Celular , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Simbiose , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Acetilação , Animais , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Elementos Facilitadores Genéticos/genética , Fermentação , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Histona Desacetilases/metabolismo , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestinos/citologia , Intestinos/imunologia , Íntrons/genética , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Amido/metabolismo , Linfócitos T Reguladores/imunologiaRESUMO
Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead.
RESUMO
Finding a sense of home for international migrants is challenging. It is even more so for older adults who migrate to a foreign country later in life to follow their adult children. This study examines Chinese immigrant elders' report of their sense of home and life-satisfaction. Based on 21 intensive interviews and107 surveys with elderly immigrants of Chinese descent, this research finds that a comfortable living condition in a natural and built environment contribute to Chinese elders' narrative of a sense of home. The lack of English language, however, makes immigrant Chinese elders feel very unsettled. Being together with children and having good social benefits are major pull factors that contribute to immigrant elders' decision to settle down in a foreign country. Those who report a stronger sense of home tend to report a higher level of life satisfaction. In conclusion, the authors argue that immigrant elders are defining their sense of home with a greater sense of independence from their adult children. Favorable social policies toward older adults, such as Medicare, Medicaid, low income housing, and social services, are important factors that make older immigrants feel a sense of home in a foreign land, although the inability to communicate is a barrier to a complete sense of home for transnational migrants in old age.