Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 705: 149742, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38460438

RESUMO

l-norleucine, an isomer of leucine, stimulates the anabolic process of insulin. However, it is not known if and how it improves insulin sensitivity and insulin resistance. This experiment describes the generation of an insulin resistance model using high glucose-induced cells and the administration of 1.0 mmol/L l-norleucine for 48 h, to observe the effects on metabolism and gene expression in skeletal muscle cells. The results showed that l-norleucine significantly increased mitochondrial ATP content, decreased the amount of reactive oxygen species (ROS) and promoted the expression of mitochondrial generation-related genes TFAM, AMPK, PGC-1α in cells under high glucose treatment; at the same time, l-norleucine also increased glucose uptake, suggesting that l-norleucine increased insulin sensitivity and improved insulin resistance. This study suggesting that l-norleucine improves insulin resistance by ameliorating oxidative stress damage of mitochondria, improving mitochondrial function, and improving insulin sensitivity in skeletal muscle cell caused by high glucose, rather than by altering mitochondrial efficiency.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Insulina/metabolismo , Norleucina/metabolismo , Norleucina/farmacologia , Glucose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias Musculares/metabolismo
2.
Small ; : e2400042, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600889

RESUMO

Modulating the coordination environment of the metal active center is an effective method to boost the catalytic performances of metal-organic frameworks (MOFs) for oxygen evolution reaction (OER). However, little attention has been paid to the halogen effects on the ligands engineering. Herein, a series of MOFs X─FeNi-MOFs (X = Br, Cl, and F) is constructed with different coordination microenvironments to optimize OER activity. Theoretical calculations reveal that with the increase in electronegativity of halogen ions in terephthalic acid molecular (TPA), the Bader charge of Ni atoms gets larger and the Ni-3d band center and O-2p bands move closer to the Fermi level. This indicates that an increase in ligand negativity of halogen ions in TPA can promote the adsorption ability of catalytic sites to oxygen-containing intermediates and reduce the activation barrier for OER. Experimental also demonstrates that F─FeNi-MOFs exhibit the highest catalytic activity with an ultralow overpotential of 218 mV at 10 mA cm-2, outperforming most otate-of-the-art Fe/Co/Ni-based MOFs catalysts, and the enhanced mass activity by seven times compared with that for the sample before ligands engineering. This work opens a new avenue for the realization of the modulation of NiFe─O bonding by halogen ion in TPA and improves the OER performance of MOFs.

3.
Genet Mol Biol ; 45(3): e20220117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214618

RESUMO

Hordeum californicum (H. californicum, 2n=2X=14, HcHc), one of the wild relatives of wheat (Triticum aestivum L.), harbors many desirable genes and is a potential genetic resource for wheat improvement. In this study, an elite line ND646 was selected from a BC4F5 population, which was developed using 60Co-γ irradiated wheat-H. californicum disomic addition line WJ28-1 (DA6Hc) as the donor parent and Ningchun 4 as the recurrent parent. ND646 was identified as a novel wheat-H. californicum 6HcS/6BL translocation line using genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and H. californicum-specific expressed sequence tag (EST) markers. Further evaluation revealed that ND646 had excellent performance in several traits, such as a higher sedimentation value (SV), higher water absorption rate (WAR), and higher hardness index (HI). More importantly, it had more kernels per spike (KPS), a higher grain yields (GY), and good resistance to powdery mildew, leaf rust, and 2,4-D butylate (2,4-D). Its excellent phenotypic performance laid the foundation for further investigation of its genetic architecture and makes ND646 a useful germplasm resource for wheat breeding.

4.
Front Plant Sci ; 13: 987257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092409

RESUMO

Methylation and demethylation of histone play a crucial role in regulating chromatin formation and gene expression. The jumonji C (JmjC) domain-containing proteins are demethylases that are involved in regulating epigenetic modification in plants. In our study, the JmjC genes in Triticum aestivum L., Triticum turgidum L., Triticum dicoccoides L., Triticum urartu L., and Aegilops tauschii L. were identified. Phylogenetic relationship and colinearity analysis revealed that the wheat JmjC genes were conserved in A, B, and D subgenomes during evolution. Cis-acting elements analysis showed that elements related to stress response, hormone response, and light response were found in wheat JmjC genes. The expression of JmjC genes was affected by tissue types and developmental stages, and members of the same subfamily tended to have similar expression patterns in wheat. They also showed a unique expression pattern in root during PEG (Polyethylene glycol) treatment. In conclusion, comprehensive analysis indicated that three members (Tr-1A-JMJ2, Tr-1B-JMJ2, and Tr-1D-JMJ2) might be regulated by several hormones and function in the early stages of drought stress, while eight members (Tr-1B-JMJ3, Tr-4B-JMJ1, Tr-7A-JMJ1, etc.) displayed a significantly high expression after 24 h of PEG treatment, indicating a role in the later stages of drought stress. This research presents the first genome-wide study of the JmjC family in wheat, and lays the foundation for promoting the study of their functional characterization in wheat drought resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA