Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 270-276, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38279415

RESUMO

Prostatitis is one common male disease with a high prevalence. Traditional Chinese medicine (TCM) has been used as an alternative method for the treatment. However, the molecular mechanism of Prostatitis No.1 Traditional Chinese Medicine (P1TCM) on prostatitis is still unclear. For this purpose, the rat models were constructed and treated with PITCM of control, model, low (10 g/kg/d), medium (20 g/kg/d), and high (40 g/kg/d), as well as the transfections of medium dosage+NC mimic, and medium dosage+miR-205-5p mimic, medium dosage+NC mimic+pc-NC, medium dosage+miR-205-5p mimic+pc-NC, and medium dosage+miR-205-5p mimic+pc-v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES1). Real-time quantitative PCR (qPCR) and western blotting analyses were carried out to evaluate the expression of miR-205-5p and YES1, respectively. The levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α) were assessed by enzyme-linked immunosorbent assay (ELISA). The targeting role of miR-205-5p on YES1 was predicted by StarBase and verified by a dual-luciferase reporter gene assay. Results showed that the optimal treatment of P1TCM relieved the damage of prostate tissue, decreased the immunity and inflammation factors, and reduced the expression level of miR-205-5p in prostate tissue and serum. miR-205-5p mimics significantly relieved tissue damage and reduced immunity and inflammatory functions. miR-205-5p targeted YES1. YES1 was significantly upregulated in medium dosage treatment compared with Control, while downregulated compared with the Model. YES1 was also upregulated in prostatitis patients. The pc-YES1 reversed the function of the miR-205-5p mimic. In conclusion, P1TCM significantly relieved the tissue damage and reduced prostate patients' inflammatory functions through miR-205-5p/YES1, which might be essential for clinical studies.


Assuntos
MicroRNAs , Prostatite , Humanos , Masculino , Ratos , Animais , Prostatite/tratamento farmacológico , Prostatite/genética , Medicina Tradicional Chinesa , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa , Western Blotting , Anti-Inflamatórios , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas Proto-Oncogênicas c-yes/metabolismo
2.
Anal Chem ; 94(2): 1465-1473, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34958552

RESUMO

The ever-increasing attention on the highly sensitive biosensors pushes people to explore functional nanomaterials for signal amplification. To endow inert metal-organic frameworks (MOFs) with enzyme mimicking activity, a simple strategy of introducing Cu2+ via coordination with 2,2'-bipyridine ligands of Zr-MOF, just like "Midas touch," is proposed. More details on the coordination environment of Cu active sites in Zr-MOF-Cu are disclosed via electron paramagnetic resonance and synchrotron-radiation-based X-ray absorption fine structure analyses. The as-prepared Zr-MOF-Cu exhibits unparalleled catalytic ability, which can catalyze ascorbic acid (AA) to dehydroascorbic acid and further stimulate the reaction with o-phenylenediamine to produce fluorescent signal probes with 8-fold signal amplification. On the basis of catalyzing the dephosphorylation process of l-ascorbic acid-2-phosphate to yield AA via alkaline phosphatase (ALP) and AA-dependent signal responses, a universal fluorescent system has been successfully constructed for quantitative measurement of the activity of ALP and the ALP-related enzyme-linked immunosorbent assay with carcinoembryonic antigen as a model. Moreover, the stable loading of Cu active sites endows the sensing platform with anti-inference capacity and enables its reuse without loss of catalytic activity after 6 months.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Fosfatase Alcalina/análise , Catálise , Humanos , Estruturas Metalorgânicas/química
3.
Anal Chem ; 94(32): 11360-11367, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35921170

RESUMO

All-inorganic halide perovskite nanocrystals with their fascinating optical properties have drawn increasing attention as promising nanoemitters. However, due to the intrinsic poor colloidal stability against the external environment, the practical applications are greatly limited. Herein, a facile and effective strategy for the in situ encapsulation of CsPbBr3 NCs into highly dense multichannel polyacrylonitrile (PAN) nanofibers via a uniaxial electrospinning strategy is presented. Such a facile uniaxial electrospinning strategy enables the in situ formation of CsPbBr3 NCs in PAN nanofibers without the introduction of stabilizers. Significantly, the obtained CsPbBr3 nanofibers not only display intense fluorescence with a high quantum yield (≈48%) but also present high stability when exposed to water and air owing to the peripheral protecting matrix of PAN. After immersing CsPbBr3@PAN nanofiber films in water for 100 days, the quantum yield of CsPbBr3@PAN nanofibers maintained 87.5% of the original value, which was much higher than that using CsPbBr3 NCs. Furthermore, based on the spectral overlap between the electrochromic material of ruthenium purple and fluorescence of CsPbBr3@PAN nanofiber films with excellent water stability, a reversible fluorescence switch is constructed with good fatigue resistance, suggesting their promising applications.

4.
Anal Chem ; 93(17): 6873-6880, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33899464

RESUMO

A highly fluorescent emission reaction between terephthalic acid (PTA) and ascorbic acid (AA) via simple control of the reaction temperature was first revealed with the detailed formation mechanism and various characterizations including electron paramagnetic resonance and mass spectrometry. Based on the AA-responsive emission, the alkaline phosphatase (ALP) triggered the transformation of l-ascorbic acid 2-phosphate trisodium salt to AA was integrated with the present system for developing a sensitive, selective, and universal platform. The monitoring of the activity of ALP and the fabrication of ALP-based enzyme-linked immunoassay (ELISA) with carcinoembryonic antigen (CEA) as the model target was performed. The fluorescence intensity correlated well to the CEA concentration in the ranges of 0.25-30 ng/mL, with a detection limit of 0.08 ng/mL. Such a facile protocol based on the fluorescent reaction between PTA and AA without the assistance of catalysis of nanomaterials avoided the laborious synthesis procedure and provided a direct strategy for the early clinical diagnosis coupled with ALP-related catalysis.


Assuntos
Ácido Ascórbico , Antígeno Carcinoembrionário/análise , Ensaio de Imunoadsorção Enzimática , Fosfatase Alcalina , Catálise , Humanos , Nanoestruturas
5.
Anal Chem ; 92(24): 16066-16071, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33211481

RESUMO

Integrating two kinds of fluorescent probes in one system to develop a ratiometric sensing platform is of prime importance for achieving an accurate assay. Inspired by the efficient overlapped spectrum of 2-aminoterephthalic acid (PTA-NH2) and 2,3-diaminophenazine (DAP), a new sensitive ratiometric fluorescent sensor has been developed for Cu2+ on the basis of in situ converting o-phenylenediamine (OPD) into DAP through the catalysis of Cu2+. Here, the presence of Cu2+ induced the emission of DAP, which acted as an energy acceptor to inhibit the emission of PTA-NH2. This dual-emission reverse change ratiometric profile based on the inner-filter effect improved sensitivity and accuracy, and the highly sensitive determination of Cu2+ with a detection limit of 1.7 nmol·L-1 was obtained. The proposed sensing platform displayed the wide range of detection of Cu2+ from 5 to 200 nmol·L-1 by modulating the reaction time between Cu2+ and OPD. Moreover, based on the specific interaction between glutathione (GSH) and Cu2+, this fluorescent sensor showed high response toward GSH in a range of 0.5-80 µmol·L-1 with a detection limit of 0.16 µmol·L-1. The successful construction of this simple ratiometric sensing platform without the participation of enzymes provides a new route for the detection of small biological molecules that are closely related to human health.

6.
Anal Chem ; 92(14): 10108-10113, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32545951

RESUMO

Designing the catalytic interface that preferentially attracts reactants is highly desirable for amplifying chemiluminescence (CL) emission. Herein, to boost the generation of reactive oxygen species (ROS) from dissolved O2 molecule, flower-like cobalt hydroxide (f-Co(OH)2) based catalytic interface with hierarchical and porous architecture were in situ created in the coexistence of BSA and Co2+. Benefiting from the oxidase-like catalysis capability and the unique microstructure of f-Co(OH)2, ROS was efficiently produced. Meanwhile, the capping ligands of BSA endowed the interface with the capability of enriching functionality through the interaction between BSA and luminol. 100-fold CL enhancement was achieved using the as-prepared catalytic interface compared with the classical luminol-Co2+ or luminol-BSA system. Moreover, the proposed catalytic amplification mechanism could be extended to the different proteins such as lysozyme, protamine, thrombin, papain. Based on the quenching effect on CL, a sensitive sensing platform was constructed for the determination of ascorbic acid with satisfied results. Our finding provided a novel "all-in-one" route to design the catalytic interface for amplifying CL emission.


Assuntos
Ácido Ascórbico/sangue , Cobalto/química , Hidróxidos/química , Luminescência , Animais , Catálise , Bovinos , Cobalto/metabolismo , Hidróxidos/metabolismo , Medições Luminescentes , Luminol/química , Luminol/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Tamanho da Partícula , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície
7.
Anal Chem ; 90(19): 11651-11657, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30176715

RESUMO

All-inorganic halide perovskite CsPbBr3 nanocrystals (NCs) have attracted more attention in recent years due to the unique optical feature. To date, most of the research was mainly focused on the photoluminescence (PL) and electrochemiluminescence (ECL) of the perovskite NCs. In this work, the strong chemiluminescence (CL) emission of CsPbBr3 NCs was observed for the first time on the hexane/water interface with the assistance of ammonium persulfate-(NH4)2S2O8 as coreactant. Different coreactants were investigated to demonstrate the effect on the CL behavior and it was found that CL intensity achieved the maximum in the presence of (NH4)2S2O8. In this system, electron transfer took place on the surface of the CsPbBr3 NCs, and the excited CsPbBr3 NCs was originated from the direct chemical oxidation of (NH4)2S2O8. The CL spectrum of CsPbBr3 NCs was also collected and was consistent with their PL and ECL spectra, indicating that CsPbBr3 NCs played a role of luminophor during the CL process. The discovery of monochromatic CL of highly crystallized CsPbBr3 NCs not only extends the applications of halide perovskite materials in the analytical field but also provides a new route for the exploration of the physical chemistry properties.

8.
Front Oncol ; 11: 640276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113562

RESUMO

Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1's underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.

9.
Chem Sci ; 9(34): 6981-6987, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30210773

RESUMO

Versatile DNA logic devices have exhibited magical power in molecular-level computing and data processing. During any type of data transmission, the appearance of erroneous bits (which have severe impacts on normal computing) is unavoidable. Luckily, the erroneous bits can be detected via placing a parity generator (pG) at the sending module and a parity checker (pC) at the receiving module. However, all current DNA pG/pC systems use optical signals as outputs. In comparison, sensitive, facilely operated, electric-powered electrochemical outputs possess inherent advantages in terms of potential practicability and future integration with semiconductor transistors. Herein, taking an even pG/pC as a model device, we construct the first electrochemical DNA pG/pC system so far. Innovatively, a thrombin aptamer is integrated into the input-strand and it functions as a "nanoclaw" to selectively capture thrombin; the electrochemical impedance changes induced by the "nanoclaw/thrombin" complex are used as label-free outputs. Notably, this system is simple and can be operated within 2 h, which is comparable with previous fluorescent ones, but avoids the high-cost labeled-fluorophore and tedious nanoquencher. Moreover, taking non-interfering poly-T strands as additional inputs, a cascade logic circuit (OR-2 to 1 encoder) and a parity checker that could distinguish even/odd numbers from natural numbers (0 to 9) is also achieved based on the same system. This work not only opens up inspiring horizons for the design of novel electrochemical functional devices and complicated logic circuits, but also lays a solid foundation for potential logic-programmed target detection.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26680236

RESUMO

Toxabramis swinhonis is a one of the main bycatch species in China's freshwater fishery and an important food resource for the larger fishes in the main rivers and lakes in China. For better understanding the biology of this species, the complete mitochondrial genome of Toxabramis swinhonis was determined and analyzed in this study. The complete mitogenome of T. swinhonis is 16 622 bp in length, which contains 22 transfer RNAs, 2 ribosomal RNAs, 13 protein-coding genes and 2 non-coding regions: origin of light-strand replication (OL) and control region (D-loop). The determination of T. swinhonis mitogenome would play an important role in genetic diversity and evolution for Cyprinidae.


Assuntos
Cyprinidae/genética , Genes Mitocondriais , Genoma Mitocondrial , Filogenia , Animais , Sequência de Bases , China , DNA Mitocondrial , Variação Genética , Genômica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA