RESUMO
The uptake, translocation, and transformation of engineered nanoparticles (ENPs) in plants present significant challenges due to the lack of effective determination methods. This is especially true for selenium nanoparticles (SeNPs), which hold promise for Se-biofortified agriculture and exhibit dynamic behaviors within plant system. Herein, we proposed a novel approach that incorporates enzymic digestion and membrane filtration to selectively extract SeNPs and dissolved Se from plant tissues, employing rice (Oryza sativa) plant as a model. Subsequently, the SeNPs retained on the membrane were quantified using inductively coupled plasma mass spectrometry (ICPMS), while the dissolved Se in the filtrate, including selenite (Se(IV)), selenate (Se(VI)), and seleno amino acid, were analyzed by liquid chromatography coupled with ICPMS (LC-ICPMS). Recoveries of 83.5-91.4% for SeNPs and 73.6-99.4% for dissolved Se at a spiking level of 8 µg/g in quality control samples were obtained. With the established method, it was discovered that SeNPs taken up by rice leaves can transform into Se (IV) and organic Se, and all the Se species could be translocated downward, but only Se (IV) and SeNPs could be excreted through the roots. These findings provide valuable insights into the fate of SeNPs in plants and their related biological responses.
Assuntos
Espectrometria de Massas , Nanopartículas , Oryza , Selênio , Oryza/metabolismo , Oryza/química , Selênio/química , Selênio/análise , Selênio/metabolismo , Nanopartículas/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Cromatografia Líquida/métodosRESUMO
The dark generation of reactive oxygen species (ROS), particularly hydroxyl radicals (·OH), is crucial in the oxidative transformation of various pollutants. However, the mechanisms behind this process are predominantly linked to direct O2 activation by reduced substances such as Fe(II) and natural organic matter. In this study, we introduce a previously overlooked dual-ligand mechanism that significantly amplifies ·OH generation on iron oxyhydroxides, facilitated by cysteine and pyrophosphate. Our findings reveal that these ligands collaboratively boost ·OH generation by 99.5-125.7% compared to Fe(II) alone. This enhancement occurs through a two-step electron transfer (ET) process, where cysteine transfers electrons to O2 through iron oxyhydroxides. The complexation of pyrophosphate with iron oxyhydroxides further reduces the thermodynamic barriers, notably promoting this ET process and significantly improving the electron utilization efficiency for O2 activation by the electron donor cysteine. Such a process has shown its great potential for effectively driving the oxidative transformation of various pollutants, including As(III), dichlorophenol, and carbamazepine. These findings offer valuable insights for nature-based pollutant mitigation in soil and subsurface environments.
RESUMO
Biochar has demonstrated significant promise in addressing heavy metal contamination and methane (CH4) emissions in paddy soils; however, achieving a synergy between these two goals is challenging due to various variables, including the characteristics of biochar and soil properties that influence biochar's performance. Here, we successfully developed an interpretable multitask deep learning (MTDL) model by employing a tensor tracking paradigm to facilitate parameter sharing between two separate data sets, enabling a synergy between Cd and CH4 mitigation with biochar amendments. The characteristics of biochar contribute similar weightings of 67.9% and 62.5% to Cd and CH4 mitigation, respectively, but their relative importance in determining biochar's performance varies significantly. Notably, this MTDL model excels in custom-tailoring biochar to synergistically mitigate Cd and CH4 in paddy soils across a wide geographic range, surpassing traditional machine learning models. Our findings deepen our understanding of the interactive effects of Cd and CH4 mitigation with biochar amendments in paddy soils, and they also potentially extend the application of artificial intelligence in sustainable environmental remediation, especially when dealing with multiple objectives.
Assuntos
Aprendizado Profundo , Oryza , Solo , Cádmio , Metano , Inteligência Artificial , Carvão VegetalRESUMO
The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40, Δ66Znshoot-root = -0.36 to -0.27) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.
Assuntos
Cádmio , Oryza , Solo , Zinco , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Zinco/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Transporte Biológico , Poluentes do Solo/metabolismoRESUMO
Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 µg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.
Assuntos
Resíduos de Praguicidas , Praguicidas , Vigna , Humanos , Tiametoxam/análise , Tiametoxam/metabolismo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Vigna/metabolismo , Bioacumulação , Contaminação de Alimentos/análiseRESUMO
This work presents the first example of acid/base-responsive and near-infrared (NIR)-absorbing photocatalysts based on imidazole-anion-fused perylene diimide chromophores. The photocatalysts were in situ generated by deprotonation of imidazole-fused perylene diimide under an alkaline environment. NIR (λ = 730 nm, 128 mW/cm2) photoinduced atom transfer radical polymerization (ATRP) was implemented, exhibiting high efficiency and excellent livingness under ppm level of photocatalysts (15 ppm relative to monomer) and Cu(II) complex (10 ppm relative to monomer) concentrations. The method showed capabilities to polymerize behind opaque barriers (i.e., paper and pig skin) and under aerobic condition. Notably, this work demonstrated a dual temporal control of polymerization by adding weak base/acid and switching NIR light on/off. The polymerization can even be halted by bubbling CO2 and was then fully recovered by adding triethylamine. The NIR photoATRP of acrylamide monomers in aqueous solution was also performed, which can be regulated by the change of pH.
RESUMO
An asymmetric synthesis of chiral 2,5-diketopiperazines by the Ugi-4CR/cyclization is exhibited. The employment of catalytic anionic chiral Co(III) complexes delivered α-propiolyl aminoamides in high yields with excellent enantioselectivities (31 examples, up to 95% ee). The following treatment of Ugi-adducts with PPh3 leads to chiral 2,5-DKPs without significant loss of enantioselectivities (26 examples, up to 91% ee).
RESUMO
Chemical oxidation of As(III) by iron (Fe) oxyhydroxides has been proposed to occur under anoxic conditions and may play an important role in stabilization and detoxification of As in subsurface environments. However, this reaction remains controversial due to lack of direct evidence and poorly understood mechanisms. In this study, we show that As(III) oxidation can be facilitated by Fe oxyhydroxides (i.e., goethite) under anoxic conditions coupled with the reduction of structural Fe(III). An excellent electron balance between As(V) production and Fe(III) reduction is obtained. The formation of an active metastable Fe(III) phase at the defective surface of goethite due to atom exchange is responsible for the oxidation of As(III). Furthermore, the presence of defects (i.e., Fe vacancies) in goethite can noticeably enhance the electron transfer (ET) and atom exchange between the surface-bound Fe(II) and the structural Fe(III) resulting in a two time increase in As(III) oxidation. Atom exchange-induced regeneration of active goethite sites is likely to facilitate As(III) coordination and ET with structural Fe(III) based on electrochemical analysis and theoretical calculations showing that this reaction pathway is thermodynamically and kinetically favorable. Our findings highlight the synergetic effects of defects in the Fe crystal structure and Fe(II)-induced catalytic processes on anoxic As(III) oxidation, shedding a new light on As risk management in soils and subsurface environments.
Assuntos
Compostos de Ferro , Ferro , Ferro/química , Compostos de Ferro/química , Minerais/química , Oxirredução , Compostos Ferrosos/química , Compostos Férricos/químicaRESUMO
The dark production of reactive oxygen species (ROS) coupled to biogeochemical cycling of iron (Fe) plays a pivotal role in controlling arsenic transformation and detoxification. However, the effect of secondary atom incorporation into Fe(III) oxyhydroxides on this process is poorly understood. Here, we show that the presence of oxygen vacancy (OV) as a result of Cu incorporation in goethite substantially enhances the As(III) oxidation by Fe(II) under oxic conditions. Electrochemical and density functional theory (DFT) evidence reveals that the electron transfer (ET) rate constant is enhanced from 0.023 to 0.197 s-1, improving the electron efficiency of the surface-bound Fe(II) on OV defective surfaces. The cascade charge transfer from the surface-bound Fe(II) to O2 mediated by Fe(III) oxyhydroxides leads to the O-O bond of O2 stretching to 1.46-1.48 Å equivalent to that of superoxide (â¢O2-), and â¢O2- is the predominant ROS responsible for As(III) oxidation. Our findings highlight the significant role of atom incorporation in changing the ET process on Fe(III) oxyhydroxides for ROS production. Thus, such an effect must be considered when evaluating Fe mineral reactivity toward changing their surface chemistry, such as those noted here for Cu incorporation, which likely determines the fates of arsenic and other redox sensitive pollutants in the environments with oscillating redox conditions.
Assuntos
Arsênio , Compostos Férricos , Compostos Férricos/química , Oxigênio , Espécies Reativas de Oxigênio , Arsênio/química , Minerais/química , Oxirredução , Compostos Ferrosos/química , Estresse OxidativoRESUMO
Anions accompanying inorganic fertilizers, such as chloride and sulfate ions, potentially affect the solubility, uptake, and transport of Cd to rice grains. However, the role of anions in controlling Cd transport in the soil-soil solution-Fe plaque-rice plant continuum remains poorly understood. Cd isotope ratios were applied to Cd-contaminated soil pots, hydroponic rice, and adsorption experiments with or without KCl and K2SO4 treatments to decipher transport processes in the complex soil-rice system. The chloride and sulfate ions increased the Cd concentrations in the soil solution, Fe plaque, and rice plants. Accordingly, the magnitude of positive fractionation from soil to the soil solution was less pronounced, but that between soil and Fe plaque or rice plant is barely varied. The similar isotope composition of Fe plaque and soil, and the similar fractionation magnitude between Fe plaque and the solution and between goethite and the solution, suggested that desorption-sorption between iron oxides and the solution could be important at the soil-soil solution-Fe plaque continuum. This study reveals the roles of chloride and sulfate ions: (i) induce the mobility of light Cd isotopes from soil to the soil solution, (ii) chloro-Cd and sulfato-Cd complexes contribute to Cd immobilization in the Fe plaque and uptake into roots, and (iii) facilitate second leaves/node II-to-grain Cd transport within shoots. These results provide insights into the anion-induced Cd isotope effect in the soil-rice system and the roles of anions in facilitating Cd migration and transformation.
Assuntos
Oryza , Poluentes do Solo , Ferro , Cádmio , Cloretos/farmacologia , Solo , Sulfatos , Isótopos/farmacologia , Raízes de Plantas/químicaRESUMO
Two extracellular domains of the adhesive receptor DNAM-1 are involved in various cellular biological processes through binding to ligand CD155, usually under a mechano-microenvironment. The first extracellular domain (D1) plays a key role in recognition, but the function of the second extracellular domain (D2) and effects of force on the interaction of DNAM-1 with CD155 remain unclear. We herein studied the interaction of DNAM-1 with CD155 by performing steered molecular dynamics (MD) simulations, and observed the roles of tensile force and D2 on the affinity of DNAM-1 to CD155. The results showed that D2 improved DNAM-1 affinity to CD155; the DNAM-1/CD155 complex had a high mechanical strength and a better mechanical stability for its conformational conservation either at pulling with constant velocity or under constant tensile force (≤100 pN); the catch-slip bond transition governed CD155 dissociation from DNAM-1; and, together with the newly assigned key residues in the binding site, force-induced conformation changes should be responsible for the mechanical regulation of DNAM-1's affinity to CD155. This work provided a novel insight in understanding the mechanical regulation mechanism and D2 function in the interaction of DNAM-1 with CD155, as well as their molecular basis, relevant transmembrane signaling, and cellular immune responses under a mechano-microenvironment.
Assuntos
Imunidade Celular , Simulação de Dinâmica Molecular , Domínios ProteicosRESUMO
Cancer cells can evade immune surveillance through binding of its transmembrane receptor CD47 to CD172a on myeloid cells. CD47 is recognized as a promising immune checkpoint for cancer immunotherapy inhibiting macrophage phagocytosis. N-terminal post-translated modification (PTM) via glutaminyl cyclase is a landmark event in CD47 function maturation, but the molecular mechanism underlying the mechano-chemical regulation of the modification on CD47/CD172a remains unclear. Here, we performed so-called "ramp-clamp" steered molecular dynamics (SMD) simulations, and found that the N-terminal PTM enhanced interaction of CD172a with CD47 by inducing a dynamics-driven contraction of the binding pocket of the bound CD172a, an additional constraint on CYS15 on CD47 significantly improved the tensile strength of the complex with or without PTM, and a catch bond phenomenon would occur in complex dissociation under tensile force of 25 pN in a PTM-independent manner too. The residues GLN52 and SER66 on CD172a reinforced the H-bonding with their partners on CD47 in responding to PTM, while ARG69 on CD172 with its partner on CD47 might be crucial in the structural stability of the complex. This work might serve as molecular basis for the PTM-induced function improvement of CD47, should be helpful for deeply understanding CD47-relevant immune response and cancer development, and provides a novel insight in developing of new strategies of immunotherapy targeting this molecule interaction.
Assuntos
Antígeno CD47 , Neoplasias , Humanos , Antígeno CD47/metabolismo , Antígenos de Diferenciação/química , Macrófagos/metabolismo , Fagocitose , Neoplasias/metabolismoRESUMO
Cocontamination with tetracycline (TC) and arsenic (As) is very common in paddy fields. However, the process and underlying mechanism of arsenite (As(III)) transformation on iron mineral surfaces in the presence of antibiotic contaminants remain unclear. In this study, the release and oxidation of As(III) on ferrihydrite (Fh) surfaces and Fh transformation in the presence of TC under both aerobic and anaerobic conditions were investigated. Our results indicated that the TC-induced reductive dissolution of Fh (Fe(II) release) and TC competitive adsorption significantly promote the release of As, especially under anaerobic conditions. The release of As was increased with increasing TC concentration, whereas it decreased with increasing pH. Interestingly, under both aerobic and anaerobic conditions, the addition of TC enhanced the oxidation of As(III) by Fh and induced the partial transformation of Fh to lepidocrocite. Under aerobic conditions, the adsorbed Fe(II) activated the production of reactive oxygen species (·OH and 1O2) from dissolved O2, with Fe(IV) being responsible for As(III) oxidation. Under anaerobic conditions, the abundant oxygen vacancies of Fh affected the oxidation of As(III) during Fh recrystallization. Thus, this study provided new insights into the role of TC on the migration and transformation of As coupled with Fe in soils.
Assuntos
Arsênio , Antibacterianos , Arsênio/química , Compostos Férricos/química , Compostos Ferrosos , Oxirredução , Oxigênio , TetraciclinaRESUMO
INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomes are involved in the modulation of tissue repair and regeneration. CircRNAs play important roles in BMSCs exosomes. The current study sought to explore the role of circRNAs in exosomes derived from BMSCs of postmenopausal osteoporosis (PMOP) patients and the underlying mechanisms. METHODS: RNA was extracted from BMSCs exosomes of PMOP and a control group. RNA microarray and bioinformatics analyses were used to explore the expression profile and functions circRNAs. Differentially expressed circRNAs from 20 PMOP and 20 controls were analyzed using RT-qPCR. RESULTS: A total of 237 upregulated and 279 downregulated circRNAs were identified in the current study. The top-10 most upregulated circRNAs in the PMOP group were hsa_circ_0069691, hsa_circ_0005678, hsa_circ_0006464, hsa_circ_0015813, hsa_circ_0000511, hsa_circ_0076527, hsa_circ_0009127, hsa_circ_0047285, hsa_circ_0027741, and hsa_circ_0090949. The top-10 most downregulated circRNAs were hsa_circ_0048669, hsa_circ_0090247, hsa_circ_0070899, hsa_circ_0087557, hsa_circ_0045963, hsa_circ_0090180, hsa_circ_0058392, hsa_circ_0040751, hsa_circ_0067910, and hsa_circ_0049484. RT-PCR verified dysregulation of 5 circRNAs including hsa_circ_0009127, hsa_circ_0090759, hsa_circ_0058392, hsa_circ_0090247, and hsa_circ_0049484. Moreover, a circRNA-microRNA-mRNA interaction network was developed based on differentially expressed circRNAs. Functional analysis showed that pathways involved in the regulation of autophagy, PI3K-Akt signaling, FoxO signaling, and MAPK signaling were associated with the differentially expressed circRNAs in PMOP patients. CONCLUSION: The findings of this study show dysregulated circRNAs in BMSCs exosomes of PMOP patients, which may affect the progression of PMOP. These circRNAs can be used as predictive biomarkers and as therapeutic targets for the treatment of PMOP.
Assuntos
Exossomos/genética , Células-Tronco Mesenquimais/citologia , Osteoporose Pós-Menopausa/genética , RNA Circular/genética , Antígenos CD/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/genética , Feminino , Redes Reguladoras de Genes , Humanos , Células-Tronco Mesenquimais/patologia , MicroRNAs/genética , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reprodutibilidade dos TestesRESUMO
The aim of this study was to identify potentially toxic elements (PTEs) associated with airborne particulate matters (PMs) and their source identification and environmental risk in Isfahan Province, central Iran. Dust samples were collected from various locations included three urban and four rural locations. Results revealed the eastern part of the region as the main source of dust and showed that the highest monthly atmospheric dust deposition was in July (5.53 g m-2). The mean concentrations of Zn, Pb, Cu and Cd were respectively 279, 63, 49 and 0.5 mg kg-1 in dust samples, whereas Cd showed the highest ecological risk index. Dust samples of urban areas showed considerable and very high levels of pollution indices for Pb and Zn, respectively. Among the metals, Zn showed the highest enrichment factor (>5), mainly due to anthropogenic sources. The comprehensive ecological risk index of PTEs revealed the moderate and considerable risk of Isfahan and Najafabad cities, respectively.
Assuntos
Poeira , Metais Pesados , Cádmio , China , Cidades , Poeira/análise , Monitoramento Ambiental/métodos , Irã (Geográfico) , Chumbo , Metais Pesados/análise , Medição de RiscoRESUMO
Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils, while the roles of pH and organic ligands in this process are poorly understood. Herein, the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands. Our results showed that cysteine exhibited a strong reactivity towards goethite - a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to 0.1 hr-1. However, a large portion of Fe(II) appeared to be "structural species" retained on the surface. The decline of pH was favorable to generate more Fe(II) ions and enhancing tendency of Fe(II) release to solution. The decline of generation of Fe(II) by increasing pH was likely to be caused by a lower redox potential and the nature of cysteine pH-dependent adsorption towards goethite. Interestingly, the co-existence of oxalate and citrate ligands also enhanced the rate constant of Fe(II) release from 0.09 to 0.15 hr-1; nevertheless, they negligibly affected the overall generation of Fe(II) in opposition to the pH effect. Further spectroscopic evidence demonstrated that two molecules of cysteine could form disulfide bonds (S-S) to generate cystine through oxidative dehydration, and subsequently, inducing electron transfer from cysteine to the structural Fe(III) on goethite; meanwhile, those organic ligands act as Fe(II) "strippers". The findings of this work provide new insights into the understanding of the different roles of pH and organic ligands on the generation and release of Fe induced by electron shuttles in soils.
Assuntos
Cisteína , Compostos de Ferro , Compostos Férricos , Concentração de Íons de Hidrogênio , Ligantes , Minerais , Oxirredução , SolubilidadeRESUMO
Agricultural land degradation is posing a serious threat to global food security. Restoration of the degraded land has traditionally been viewed as an inherently sustainable practice; however, restoration processes render consequential environmental impacts which could potentially exceed the benefit of restoration itself. In the present study, an integrated life cycle assessment analysis was conducted to evaluate life cycle primary, secondary, and tertiary impacts associated with the restoration of the contaminated agricultural land. The results demonstrated the importance of including spatially differentiated impacts associated with managing the land and growing crops. Comparing four risk management scenarios at a contaminated field in Southern China, it was found that the primary and secondary impacts followed the order of no action > chemical stabilization > phytoextraction > alternative planting. However, when tertiary impacts were taken into account, alternative planting rendered much higher footprint in comparison with phytoextraction and chemical stabilization, which provides evidence against an emerging notion held by some policy makers. Furthermore, assuming that the loss of the rice paddy field in Southern China is compensated by the deforested land in the Amazon rainforest, the total global environmental impact would far exceed that of no action, resulting in 687 ton CO2-e ha-1 of climate change impact. Overall, the present study provides new research findings to support more holistic policy making and also sheds lights on the future development of various restoration technologies.
Assuntos
Recuperação e Remediação Ambiental , Agricultura , Animais , China , Poluição Ambiental , Estágios do Ciclo de Vida , SoloRESUMO
The aromatic arsenical roxarsone (ROX) has been used as feed additive for decades worldwide. The past or present application of animal manure containing ROX in paddy fields results in arsenic (As) accumulation in rice grain. However, the degradation and transformation mechanisms of ROX in paddy soil which determine As bioavailability and uptake by rice are still unclear. The current study investigated the variation of As speciation and soil enzyme activities in ROX-treated soils under flooded and non-flooded conditions for six months. Our results showed that 70.2% of ROX persisted in non-flooded paddy soils after 180 d while ROX degraded completely within 7 d in flooded soils. The rapid degradation of ROX under flooded conditions owed to the enhanced biotic transformation that was caused by the low Eh and the predominant presence of Clostridium spp. and Bacillus spp. ROX was not only transformed to As(III) and As(V) in non-flooded soils but also to 3-amino-4-hydroxyphenylarsonic acid and methyl arsenicals in flooded soils. The degradation products significantly inhibited soil enzyme activities for 7-30 d, but the inhibition effects disappeared after 90 d due to the sorption of transformed As products to amorphous Fe oxides. This study provides new insights into the flooding effect on ROX fate in paddy fields, which is important for the management of animal waste and risk control on polluted sites.
Assuntos
Arsênio , Oryza , Roxarsona , Poluentes do Solo , Animais , Arsênio/análise , Solo , Poluentes do Solo/análise , ÁguaRESUMO
Water matrix certified reference material (MCRM) of volatile organic compounds (VOCs) is used to provide quality assurance and quality control (QA/QC) during the analysis of VOCs in water. In this research, a water MCRM of 28 VOCs was developed using a "reconstitution" approach by adding VOCs spiking, methanol solution into pure water immediately prior to analysis. The VOCs spiking solution was prepared gravimetrically by dividing 28 VOCs into seven groups, then based on ISO Guide 35, using gas chromatography-mass spectrometry (GC-MS) to investigate the homogeneity and long-term stability. The studies of homogeneity and long-term stability indicated that the batch of VOCs spiking solution was homogeneous and stable at room temperature for at least 15 months. Moreover, the water MCRM of 28 VOCs was certified by a network of nine competent laboratories, and the certified values and expanded uncertainties of 28 VOCs ranged from 6.2 to 17 µg/L and 0.5 to 5.3 µg/L, respectively.
RESUMO
Paddy soil and irrigation water are commonly contaminated with hexavalent chromium [Cr(VI)] near urban industrial areas, thereby threatening the safety of agricultural products and human health. In this study, we develop a porous and high specific area bone char (BC) to support nanoscale zero-valent iron (nZVI) and apply it to remediate Cr(VI) pollution in water and paddy soil under anaerobic conditions. The batch experiments reveal that BC/nZVI exhibits a higher removal capacity of 516.7 mg/(gâ¢nZVI) for Cr(VI) than nZVI when normalized to the actual nZVI content, which is 2.8 times that of nZVI; moreover, the highest nZVI utilization is the nZVI loading of 15% (BC/nZVI15). The Cr(VI) removal efficiency of BC/nZVI15 decreases with increasing pH (4 - 10). Coexisting ions (phosphate and carbonate) and humic acid can inhibit the removal of Cr(VI) with BC/nZVI15. Additionally, BC exhibits a strong advantage in promoting Cr(VI) removal by nZVI compared to the widely used biochar and activated carbon. Our results demonstrate that reduction and coprecipitation are the dominant Cr(VI) removal mechanisms. Furthermore, BC/nZVI15 shows a significantly higher reduction and removal efficiency as well as a strong anti-interference ability for Cr(VI) in paddy soil, as compared to nZVI. These findings provide a new effective material for remediating Cr(VI) pollution from water and soil.