Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 372(2): 158-167, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30268758

RESUMO

Trio, the Rho guanine nucleotide exchange factor (Rho-GEF), plays diverse roles in cell migration, cell axon guidance and cytoskeleton reorganization. Conserved during evolution, Trio encodes two guanine nucleotide exchange factor domains (GEFs) and activates small GTPases. The Rho-family small GTPases RhoA and Rac1, which are target molecules of Trio, have been described to engage in craniofacial development and tooth formation. However, the exact role of Trio in tooth development remains elusive. In this study, we generated Wnt1-cre;Triofl/fl mice to address the potential function of Trio in tooth development. Wnt1-cre;Triofl/fl mice showed short root deformity as well as decreased expression of odontogenic makers such as RUNX2, OSX, OCN, and OPN. In vitro, Trio was silenced in human stem cells of dental papilla (SCAPs). Compared with the control group, the proliferation and migration ability in the experimental group was disrupted. After knocking down Trio in SCAPs, the cells showed phenotypes of poor odontogenic differentiation and weak mineralized nodules. To study the underlying mechanism, we investigated the p38 MAPK pathway and found that loss of Trio blocked the cascade transduction of p38 MAPK signaling. In conclusion, we identified Trio as a novel coordinator in regulating root development and clarified its relevant molecular events.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Odontogênese/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Raiz Dentária/crescimento & desenvolvimento , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Papila Dentária/crescimento & desenvolvimento , Papila Dentária/metabolismo , Humanos , Camundongos , Neuropeptídeos/genética , Ligação Proteica/genética , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Raiz Dentária/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
2.
Int J Biol Sci ; 17(15): 4238-4253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803495

RESUMO

Background: Congenital anomalies are increasingly becoming a global pediatric health concern, which requires immediate attention to its early diagnosis, preventive strategies, and efficient treatments. Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 (Gnai3) gene mutation has been demonstrated to cause congenital small jaw deformity, but the functions of Gnai3 in the disease-specific microRNA (miRNA) upregulations and their downstream signaling pathways during osteogenesis have not yet been reported. Our previous studies found that the expression of Mir24-2-5p was significantly downregulated in the serum of young people with overgrowing mandibular, and bioinformatics analysis suggested possible binding sites of Mir24-2-5p in the Gnai3 3'UTR region. Therefore, this study was designed to investigate the mechanism of Mir24-2-5p-mediated regulation of Gnai3 gene expression and explore the possibility of potential treatment strategies for bone defects. Methods: Synthetic miRNA mimics and inhibitors were transduced into osteoblast precursor cells to regulate Mir24-2-5p expression. Dual-luciferase reporter assay was utilized to identify the direct binding of Gnai3 and its regulator Mir24-2-5p. Gnai3 levels in osteoblast precursor cells were downregulated by shRNA (shGnai3). Agomir, Morpholino Oligo (MO), and mRNA were microinjected into zebrafish embryos to control mir24-2-5p and gnai3 expression. Relevant expression levels were determined by the qRT-PCR and Western blotting. CCK-8 assay, flow cytometry, and transwell migration assays were performed to assess cell proliferation, apoptosis, and migration. ALP, ARS and Von Kossa staining were performed to observe osteogenic differentiation. Alcian blue staining and calcein immersions were performed to evaluate the embryonic development and calcification of zebrafish. Results: The expression of Mir24-2-5p was reduced throughout the mineralization process of osteoblast precursor cells. miRNA inhibitors and mimics were transfected into osteoblast precursor cells. Cell proliferation, migration, osteogenic differentiation, and mineralization processes were measured, which showed a reverse correlation with the expression of Mir24-2-5p. Dual-luciferase reporter gene detection assay confirmed the direct interaction between Mir24-2-5p and Gnai3 mRNA. Moreover, in osteoblast precursor cells treated with Mir24-2-5p inhibitor, the expression of Gnai3 gene was increased, suggesting that Mir24-2-5p negatively targeted Gnai3. Silencing of Gnai3 inhibited osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization. Promoting effects of osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization by low expression of Mir24-2-5p was partially rescued upon silencing of Gnai3. In vivo, mir24-2-5p Agomir microinjection into zebrafish embryo resulted in shorter body length, smaller and retruded mandible, decreased cartilage development, and vertebral calcification, which was partially rescued by microinjecting gnai3 mRNA. Notably, quite similar phenotypic outcomes were observed in gnai3 MO embryos, which were also partially rescued by mir24-2-5p MO. Besides, the expression of phospho-JNK (p-JNK) and p-p38 were increased upon Mir24-2-5p inhibitor treatment and decreased upon shGnai3-mediated Gnai3 downregulation in osteoblast precursor cells. Osteogenic differentiation and mineralization abilities of shGnai3-treated osteoblast precursor cells were promoted by p-JNK and p-p38 pathway activators, suggesting that Gnai3 might regulate the differentiation and mineralization processes in osteoblast precursor cells through the MAPK signaling pathway. Conclusions: In this study, we investigated the regulatory mechanism of Mir24-2-5p on Gnai3 expression regulation in osteoblast precursor cells and provided a new idea of improving the prevention and treatment strategies for congenital mandibular defects and mandibular protrusion.


Assuntos
Diferenciação Celular/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , MicroRNAs/metabolismo , Osteoblastos/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mimetismo Molecular , RNA/química , RNA/farmacologia , Transdução de Sinais , Regulação para Cima , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Int J Biol Sci ; 16(1): 181-193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31892855

RESUMO

Tooth development is a complex process that is regulated precisely by several signalling pathways and transcription factors. GATA-binding protein 4 (GATA4) is a DNA binding transcription factor, and our previous study showed that GATA4 is a novel regulator of root development. However, it remains unclear whether GATA4 is necessary for odontoblast differentiation and dentin formation. Here, we evaluated the phenotypic changes of Wnt1-Cre;GATA4fl/fl mice. The mutant mice showed defective dentin and short root deformity. The odontoblasts lost polarity instead of exhibiting a shorter height and flattened morphology. Moreover, the expression of several molecules, such as DSPP, COL-1, DCN, and PCNA, were downregulated during mutant tooth development. In vivo, we injected lentivirus to overexpress GATA4 in mice root. The dentin formation and the expression of odonto/osteogenic markers (DSPP, COL-1, DCN) were enhanced in the GATA4 overexpression group. During the in vitro study, the ability of proliferation, migration and odonto/osteogenic differentiation was declined by GATA4 knockdown approach in human dental pulp stem cells (DPSCs). The expression of odonto/osteogenic markers (DSPP, BMP4, RUNX2, OSX, OPN, OCN) was reduced in the shGATA4 group, while overexpressing GATA4 in DPSCs promoted mineralization. Furthermore, an immunoprecipitation-mass spectrometry procedure was used to confirm the interaction between GATA4 and Fructose-1, 6-bisphosphatase 1 (FBP1). We used gain and lose-of-function to delineated the role of GATA4 in regulating FBP1 expression. Knocking down GATA4 in DPSCs resulted in decreased glucose consumption and lactate production. We used small hairpin RNA targeting FBP1 to reduce the expression of FBP1 in DPSCs, which significantly increased glucose consumption and lactate production. Together, the results suggested that GATA4 is important for root formation and odontoblast polarity, as it promotes the growth and differentiation of dental mesenchymal cells around the root and affects the glucose metabolism of DPSCs via the negative regulation of FBP1.


Assuntos
Dentina/metabolismo , Frutose-Bifosfatase/metabolismo , Fator de Transcrição GATA4/metabolismo , Raiz Dentária/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Dentinogênese/genética , Dentinogênese/fisiologia , Frutose-Bifosfatase/genética , Fator de Transcrição GATA4/genética , Gluconeogênese/genética , Gluconeogênese/fisiologia , Camundongos Knockout , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo
4.
Int J Mol Med ; 43(1): 382-392, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30431055

RESUMO

Odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs) is a key process in tooth root formation and development. However, the molecular mechanisms underlying this process remain largely unknown. In the present study, it was identified that guanine and nucleotide binding protein 3 (GNAI3) was at least in part responsible for the odonto/osteogenic differentiation of SCAPs. GNAI3 was markedly induced in mouse tooth root development in vivo and in human SCAPs mineralization in vitro. Notably, knockdown of GNAI3 by lentiviral vectors expressing short­hairpin RNAs against GNAI3 significantly inhibited the proliferation, cell cycle progression and migration of SCAPs, as well as odonto/osteogenic differentiation of SCAPs in vitro, suggesting that GNAI3 may play an essential role in tooth root development. The promotive role of GNAI3 in odonto/osteogenic differentiation was further confirmed by downregulation of odonto/osteogenic makers in GNAI3­deficient SCAPs. In addition, knockdown of GNAI3 effectively suppressed activity of c­Jun N­terminal kinase (JNK) and extracellular­signal regulated kinase (ERK) signaling pathways that was induced during SCAPs differentiation, suggesting that GNAI3 promotes SCAPs mineralization at least partially via JNK/ERK signaling. Taken together, the present results implicate GNAI3 as a critical regulator of odonto/osteogenic differentiation of SCAPs in tooth root development, and suggest a possible role of GNAI3 in regeneration processes in dentin or other tissues.


Assuntos
Diferenciação Celular , Papila Dentária/citologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Odontogênese , Osteogênese , Células-Tronco/enzimologia , Animais , Antracenos/farmacologia , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Odontogênese/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Raiz Dentária/embriologia , Raiz Dentária/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA