Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 215, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363367

RESUMO

The metabolite urolithin A, a metabolite of the dietary polyphenol ellagic acid (EA), has significant health benefits for humans. However, studies on the gut microbiota involved in ellagic acid metabolism are limited. In this study, we conducted in vitro fermentation of EA using human intestinal microbiome combined with antibiotics (vancomycin, polymyxin B sulfate, and amphotericin B). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis demonstrated that the production capacity of urolithin A by gut microbiota co-treated with polymyxin B sulfate and amphotericin B (22.39 µM) was similar to that of untreated gut microbiota (24.26 µM). Macrogenomics (high-throughput sequencing) was used to analyze the composition and structure of the gut microbiota. The results showed that the abundance of Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum in the gut microbiota without antibiotic treatment or co-treated with polymyxin B sulfate and amphotericin B during EA fermentation was higher than that in other antibiotic treatment gut microbiota. Therefore, B. longum, B. adolescentis, and B. bifidum may be new genera involved in the conversion of EA to urolithin A. In conclusion, the study revealed unique interactions between polyphenols and gut microbiota, deepening our understanding of the relationship between phenolic compounds like EA and the gut microbiota. These findings may contribute to the development of gut bacteria as potential probiotics for further development. KEY POINTS: • Intestinal microbiome involved in ellagic acid metabolism. • Gram-positive bacteria in the intestinal microbiome are crucial for ellagic acid metabolism. • Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum participate in ellagic acid metabolism.


Assuntos
Bifidobacterium longum , Cumarínicos , Microbioma Gastrointestinal , Humanos , Ácido Elágico/metabolismo , Cromatografia Líquida , Polimixina B , Anfotericina B , Espectrometria de Massas em Tandem , Bifidobacterium longum/metabolismo , Antibacterianos
2.
Genomics ; 115(6): 110724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820823

RESUMO

Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.


Assuntos
Leite Humano , Probióticos , Feminino , Humanos , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leite/microbiologia , Genômica , Probióticos/metabolismo
3.
Respir Res ; 24(1): 73, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899372

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease with high morbidity and mortality, especially in advanced patients. We aimed to develop multi-omics panels of biomarkers for the diagnosis and explore its molecular subtypes. METHODS: A total of 40 stable patients with advanced COPD and 40 controls were enrolled in the study. Proteomics and metabolomics techniques were applied to identify potential biomarkers. An additional 29 COPD and 31 controls were enrolled for validation of the obtained proteomic signatures. Information on demographic, clinical manifestation, and blood test were collected. The ROC analyses were carried out to evaluate the diagnostic performance, and experimentally validated the final biomarkers on mild-to-moderate COPD. Next, molecular subtyping was performed using proteomics data. RESULTS: Theophylline, palmitoylethanolamide, hypoxanthine, and cadherin 5 (CDH5) could effectively diagnose advanced COPD with high accuracy (auROC = 0.98, sensitivity of 0.94, and specificity of 0.95). The performance of the diagnostic panel was superior to that of other single/combined results and blood tests. Proteome based stratification of COPD revealed three subtypes (I-III) related to different clinical outcomes and molecular feature: simplex COPD, COPD co-existing with bronchiectasis, and COPD largely co-existing with metabolic syndrome, respectively. Two discriminant models were established using the auROC of 0.96 (Principal Component Analysis, PCA) and 0.95 (the combination of RRM1 + SUPV3L1 + KRT78) in differentiating COPD and COPD with co-morbidities. Theophylline and CDH5 were exclusively elevated in advanced COPD but not in its mild form. CONCLUSIONS: This integrative multi-omics analysis provides a more comprehensive understanding of the molecular landscape of advanced COPD, which may suggest molecular targets for specialized therapy.


Assuntos
Proteômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Proteômica/métodos , Teofilina , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Metabolômica/métodos , Biomarcadores
4.
Microb Ecol ; 86(4): 2981-2992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684546

RESUMO

As one of the low-carbon and high-efficient energy sources, nuclear power is developing vigorously to alleviate the crisis of global climate warming and realize carbon neutrality goals. Meanwhile, the ecological effect of thermal drainage in the nuclear power plant is significantly remarkable, which environmental assessment system has not yet referred to microorganisms. The rapid response of microbial diversity and community structure to environmental changes is crucial for ecosystem stability. This study investigated the bacterial diversity, community construction, and the co-occurrence patterns by 16S rRNA gene amplicon sequencing among gradient warming regions in Tianwan Nuclear Power Plant. The alpha diversity of the high warming region was the lowest in summer, which was dominated by Proteobacteria, whereas the highest bacterial diversity presented in high warming regions in winter, which harbored higher proportions of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The spatial distribution of bacterial communities showed clear separation especially in summer. Strong correlations were between community compositions and environmental factors, such as salinity, DO, TN, and temperature in summer. Furthermore, remarkable seasonality in bacterial co-occurrence patterns was discovered: the robustness of the bacterial co-occurrence network was promoted in winter, while the complexity and robustness were decreased in summer due to the warming of thermal drainage. These findings reveal the potential factors underpinning the influence of thermal drainage on bacterial community structure, which make it possible to predict the ecological effect of the nuclear power plants by exploring how the microbial assembly is likely to respond to the temperature and other environmental changes.


Assuntos
Ecossistema , Centrais Nucleares , RNA Ribossômico 16S/genética , Bactérias/genética , Drenagem , Carbono
5.
Biotechnol Appl Biochem ; 70(1): 281-289, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35578780

RESUMO

Developing chitinase suitable for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its benefits in environmental protection. In this study, chitinase from Aeromonas media CZW001 (AmChi) was purified and characterized. The molecular weight of AmChi was approximately 40 kDa. AmChi exhibited maximum catalytic activity at pH 8.0 with an optimum temperature of 55°C and showed broad stability between 15 and 65°C and between pH 5.0 and 9.0. AmChi was activated by Mg2+ , Na+ , and K+ and inhibited by Hg+ , Co2+ , Fe2+ , Ca2+ , Ag+ , Zn2+ , and EDTA. The main products of AmChi on colloidal chitin were chitinhexaose and chitinpentaose. AmChi had better substrate specificity for powdered chitin than colloidal chitin and had a higher catalytic efficiency toward (GlcNAc)5 than colloidal chitin. AmChi inhibited fungal growth in a dose-dependent manner. These results suggest that AmChi could be used for the enzymatic degradation of chitin to produce chitinhexaose and chitinpentaose, which have several industrial applications.


Assuntos
Quitinases , Quitinases/química , Temperatura , Quitina/química , Quitina/metabolismo , Especificidade por Substrato , Concentração de Íons de Hidrogênio
6.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35777761

RESUMO

BACKGROUND: Accumulation of myofibroblasts is critical to fibrogenesis in idiopathic pulmonary fibrosis (IPF). Senescence and insufficient mitophagy in fibroblasts contribute to their differentiation into myofibroblasts, thereby promoting the development of lung fibrosis. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor, is essential for the early stage of lung development; however, the role of BMP4 in modulating lung fibrosis remains unknown. METHODS: The aim of this study was to evaluate the role of BMP4 in lung fibrosis using BMP4-haplodeleted mice, BMP4-overexpressed mice, primary lung fibroblasts and lung samples from patients with IPF. RESULTS: BMP4 expression was downregulated in IPF lungs and fibroblasts compared to control individuals, negatively correlated with fibrotic genes, and BMP4 decreased with transforming growth factor (TGF)-ß1 stimulation in lung fibroblasts in a time- and dose-dependent manner. In mice challenged with bleomycin, BMP4 haploinsufficiency perpetuated activation of lung myofibroblasts and caused accelerated lung function decline, severe fibrosis and mortality. BMP4 overexpression using adeno-associated virus 9 vectors showed preventative and therapeutic efficacy against lung fibrosis. In vitro, BMP4 attenuated TGF-ß1-induced fibroblast-to-myofibroblast differentiation and extracellular matrix (ECM) production by reducing impaired mitophagy and cellular senescence in lung fibroblasts. Pink1 silencing by short-hairpin RNA transfection abolished the ability of BMP4 to reverse the TGF-ß1-induced myofibroblast differentiation and ECM production, indicating dependence on Pink1-mediated mitophagy. Moreover, the inhibitory effect of BMP4 on fibroblast activation and differentiation was accompanied with an activation of Smad1/5/9 signalling and suppression of TGF-ß1-mediated Smad2/3 signalling in vivo and in vitro. CONCLUSION: Strategies for enhancing BMP4 signalling may represent an effective treatment for pulmonary fibrosis.


Assuntos
Proteína Morfogenética Óssea 4 , Fibrose Pulmonar Idiopática , Animais , Camundongos , Bleomicina/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Senescência Celular , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Mitofagia , Miofibroblastos/metabolismo , Proteínas Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232557

RESUMO

Myrosinase can hydrolyze glucosinolates to generate isothiocyanates, which have cancer prevention and anti-cancer properties. The main sources of myrosinase are cruciferous plants. To further improve the efficiency of isothiocyanates preparation, it is necessary to explore novel sources of myrosinases. In this study, we described a bacterium, Shewanella baltica Myr-37, isolated from marine mud, capable of producing a novel myrosinase (Smyr37) with a molecular weight of 100 kDa. The crude enzyme of Smyr37 showed the highest activity at 50 °C and pH 8.0. The sinigrin- and glucoraphanin-hydrolyzing activities of Smyr37 were 6.95 and 5.87 U/mg, respectively. Moreover, when the reaction temperature was 40 °C and pH was 7.0, the crude enzyme of Smyr37 could efficiently degrade glucoraphanin into sulforaphane within 25 min with a yield of 0.57 mg/mL. The corresponding conversion efficiency of sulforaphane from glucoraphanin was 89%. In summary, S. baltica Myr-37 myrosinase Smyr37, a novel myrosinase, can be used in the preparation of isothiocyanates.


Assuntos
Brassica , Shewanella , Brassica/metabolismo , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Isotiocianatos/metabolismo , Oximas , Shewanella/metabolismo , Sulfóxidos
8.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014581

RESUMO

Chitosan is a functional ingredient that is widely used in food chemistry as an emulsifier, flocculant, antioxidant, or preservative. Chitin deacetylases (CDAs) can catalyze the hydrolysis of acetyl groups, making them useful in the clean production of chitosan. However, the high inactivity of crystalline chitin catalyzed by CDAs has been regarded as the technical bottleneck of crystalline chitin deacetylation. Here, we mined the AsCDA gene from the genome of Acinetobacter schindleri MCDA01 and identified a member of the uraD_N-term-dom superfamily, which was a novel chitin deacetylase with the highest deacetylation activity. The AsCDA gene was expressed in Escherichia coli BL21 by IPTG induction, whose activity to colloidal chitin, α-chitin, and ß-chitin reached 478.96 U/mg, 397.07 U/mg, and 133.27 U/mg, respectively. In 12 h, the enzymatic hydrolysis of AsCDA removed 63.05% of the acetyl groups from α-chitin to prepare industrial chitosan with a degree of deacetylation higher than 85%. AsCDA, as a potent chitin decomposer in the production of chitosan, plays a positive role in the upgrading of the chitosan industry and the value-added utilization of chitin biological resources.


Assuntos
Quitina , Quitosana , Acinetobacter , Amidoidrolases/química , Amidoidrolases/genética , Quitina/química , Quitosana/química , Escherichia coli/genética
9.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164011

RESUMO

Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 ∘C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.


Assuntos
Aldeído Oxirredutases/metabolismo , Bacillus subtilis/metabolismo , Pichia/enzimologia , Proteínas Recombinantes/metabolismo , Acetaldeído/metabolismo , Aldeído Oxirredutases/genética , Bacillus subtilis/genética , Clonagem Molecular/métodos , Engenharia Metabólica/métodos , Organismos Geneticamente Modificados , Pichia/genética , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética , Via Secretória/genética
10.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235106

RESUMO

Bacillus velezensis is a type of microorganism that is beneficial to humans and animals. In this work, a protease-producing B. velezensis strain Z-1 was screened from sludge in the sea area near Qingdao (deposit number CGMCC No. 25059). The response surface methodology was used to analyze protease production, and the optimal temperature was 37.09 °C and pH 7.73 with the addition of 0.42% NaCl, resulting in maximum protease production of 17.64 U/mL. The optimum reaction temperature and pH of the protease of strain Z-1 were 60 °C and 9.0, respectively. The protease had good temperature and pH stability, and good stability in solvents such as methanol, ethanol and Tween 80. Ammonium, NH4+,and Mn2+ significantly promoted enzyme activity, while Zn2+ significantly inhibited the enzyme activity. The protease produced by strain Z-1 was used for the enzymolysis of mussel meat. The mussel hydrolysate exhibited good antioxidant function, with a DPPH free radical removal rate of 75.3%, a hydroxyl free radical removal rate of 75.9%, and a superoxide anion removal rate of 84.4%. This study provides a reference for the application of B. velez protease and the diverse processing applications of mussel meat.


Assuntos
Compostos de Amônio , Bivalves , Animais , Antioxidantes/farmacologia , Bacillus , Etanol , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Metanol , Peptídeo Hidrolases , Polissorbatos , Esgotos , Cloreto de Sódio , Solventes/química , Superóxidos , Temperatura
11.
Prep Biochem Biotechnol ; 51(1): 28-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32633612

RESUMO

Organic solvent-tolerant proteases have many applications in the synthesis of peptides. In this study, we have developed a low-cost and convenient method to produce highly concentrated organic solvent-tolerant protease. Organic solvent tolerant protease (OSP) gene from Bacillus sphaericus DS11 was cloned and expressed in Bacillus subtilis WB800. The optimum pH of the recombinant protease was 9.0. The optimum temperature of the recombinant protease was 40 °C. The recombinant protease was purified by ethanol with the yield of (87.33%). The yield of OSP enriched by ethanol was higher than that of by Ni-chelating affinity chromatography, which indicated that precipitation of the recombinant OSP with ethanol is a relatively low-cost and fast method for organic solvent -tolerant protease preparation. These results showed that this enzyme could be very useful in different industrial applications.


Assuntos
Bacillaceae/enzimologia , Bacillaceae/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/química , Solventes/química , Proteínas de Bactérias/genética , Precipitação Química , Detergentes/química , Estabilidade Enzimática , Etanol/química , Genes Bacterianos , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura
12.
J Org Chem ; 84(3): 1228-1237, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609359

RESUMO

A challenging problem in natural product discovery is to rapidly dereplicate known compounds and expose novel ones from complicated components. Herein, integrating the LC-MS/MS-dependent molecular networking and 1H NMR techniques efficiently and successfully enabled the targeted identification of seven new cyclohexadepsipeptides, chrysogeamides A-G (1-7), from the coral-derived fungus Penicillium chrysogenum (CHNSCLM-0003) which was targeted from a library of marine-derived Penicillium fungi. Compound 4 features a rare 3-hydroxy-4-methylhexanoic acid (HMHA) moiety which was first discovered from marine-derived organisms. Interestingly, isotope-labeling feeding experiments confirmed that 13C1-l-Leu was transformed into 13C1-d-Leu moiety, indicating that d-Leu could be isomerized from l-Leu. Compounds 1 and 2 obviously promoted angiogenesis in zebrafish at 1.0 µg/mL with nontoxic to embryonic zebrafish at 100 µg/mL. Combining molecular networking with 1H NMR as a discovery tool will be implemented as a systematic strategy, not only for known compounds dereplication but also for untapped reservoir discovery.


Assuntos
Produtos Biológicos/química , Fungos/química , Penicillium/química , Espectrometria de Massas em Tandem/métodos , Organismos Aquáticos , Espectroscopia de Prótons por Ressonância Magnética
13.
Biotechnol Lett ; 41(6-7): 849-857, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31065856

RESUMO

OBJECTIVE: To determine the impact of the N-terminal nonessential domains on the enzymological properties of a pullulanase (BmP) from Bacillus megaterium strain P6. METHODS: The domains of BmP were identified by the conserved domain (CD) search online software. BmP was prepared by fermentation with the strain P6 and its N-terminal truncated form (BmNTP) was obtained by heterologous expression. Structure-property relations were analyzed by homology modeling. RESULTS: BmP showed a domain architecture consisting of CBM41a-CBM41b-X-CBM48-pulA. CBM41a-CBM41b-X was removed in BmNTP. In comparison with BmP, BmNTP was lower in pH stability, specific activity and optimum NaCl concentration, but higher in Km value, thermostability, optimum pH and temperature, and activity enhancement by NaCl. Particularly, BmNTP was active over 0-35% (w/v) NaCl concentrations and enhanced 8.7 folds in specific activity (from 17.6 to 170 U/mg) in 10% NaCl. The solvent accessible surface area (SASA) of the catalytic triad was found to be correlated positively to the substrate affinity and negatively to the optimum temperature and activity enhancement by NaCl. CONCLUSION: The impact of CBM41a-CBM41b-X on the pullulanase properties was extensive and distinguished from the previous reports. The decrease in SASA may be responsible for the enzymological changes.


Assuntos
Bacillus megaterium/enzimologia , Glicosídeo Hidrolases/metabolismo , Organismos Aquáticos/enzimologia , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Deleção de Sequência , Cloreto de Sódio/metabolismo , Temperatura
15.
Mar Drugs ; 16(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414837

RESUMO

This study evaluated the ability of a dextranase from a marine bacterium Catenovulum sp. (Cadex) to impede formation of Streptococcus mutans biofilms, a primary pathogen of dental caries, one of the most common human infectious diseases. Cadex was purified 29.6-fold and had a specific activity of 2309 U/mg protein and molecular weight of 75 kDa. Cadex showed maximum activity at pH 8.0 and 40 °C and was stable at temperatures under 30 °C and at pH ranging from 5.0 to 11.0. A metal ion and chemical dependency study showed that Mn2+ and Sr2+ exerted positive effects on Cadex, whereas Cu2+, Fe3+, Zn2+, Cd2+, Ni2+, and Co2+ functioned as inhibitors. Several teeth rinsing product reagents, including carboxybenzene, ethanol, sodium fluoride, and xylitol were found to have no effects on Cadex activity. A substrate specificity study showed that Cadex specifically cleaved the α-1,6 glycosidic bond. Thin layer chromatogram and high-performance liquid chromatography indicated that the main hydrolysis products were isomaltoogligosaccharides. Crystal violet staining and scanning electron microscopy showed that Cadex impeded the formation of S. mutans biofilm to some extent. In conclusion, Cadex from a marine bacterium was shown to be an alkaline and cold-adapted endo-type dextranase suitable for development of a novel marine agent for the treatment of dental caries.


Assuntos
Biofilmes/efeitos dos fármacos , Dextranase/farmacologia , Proteobactérias/química , Água do Mar/microbiologia , Cárie Dentária/tratamento farmacológico , Dextranase/biossíntese , Dextranase/isolamento & purificação , Concentração de Íons de Hidrogênio , Metais/metabolismo , Metais/farmacologia , Streptococcus mutans/efeitos dos fármacos , Especificidade por Substrato , Temperatura , Dente/microbiologia
16.
Biofouling ; 32(10): 1223-1233, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27762637

RESUMO

Dental plaque is a biofilm of water-soluble and water-insoluble polysaccharides, produced primarily by Streptococcus mutans. Dextranase can inhibit biofilm formation. Here, a dextranase gene from the marine microorganism Arthrobacter oxydans KQ11-1 is described, and cloned and expressed using E. coli DH5α competent cells. The recombinant enzyme was then purified and its properties were characterized. The optimal temperature and pH were determined to be 60°C and 6.5, respectively. High-performance liquid chromatography data show that the final hydrolysis products were glucose, maltose, maltotriose, and maltotetraose. Thus, dextranase can inhibit the adhesive ability of S. mutans. The minimum biofilm inhibition and reduction concentrations (MBIC50 and MBRC50) of dextranase were 2 U ml-1 and 5 U ml-1, respectively. Scanning electron microscopy and confocal laser scanning microscope (CLSM) observations confirmed that dextranase inhibited biofilm formation and removed previously formed biofilms.


Assuntos
Arthrobacter/enzimologia , Biofilmes/efeitos dos fármacos , Placa Dentária/prevenção & controle , Dextranase/farmacologia , Polissacarídeos/química , Streptococcus mutans/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Placa Dentária/microbiologia , Dextranase/química , Dextranase/genética , Escherichia coli/efeitos dos fármacos , Hidrólise , Proteínas Recombinantes , Streptococcus mutans/efeitos dos fármacos , Temperatura
17.
J Ind Microbiol Biotechnol ; 41(1): 17-26, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197466

RESUMO

The dextranase added in current commercial dextranase-containing mouthwashes is largely from fungi. However, fungal dextranase has shown much higher optimum temperature than bacterial dextranase and relatively low activity when used in human oral cavities. Bacterial dextranase has been considered to be more effective and suitable for dental caries prevention. In this study, a dextranase (Dex410) from marine Arthrobacter sp. was purified and characterized. Dex410 is a 64-kDa endoglycosidase. The specific activity of Dex410 was 11.9 U/mg at optimum pH 5.5 and 45 °C. The main end-product of Dex410 was isomaltotriose, isomaltoteraose, and isomaltopentaose by hydrolyzing dextran T2000. In vitro studies showed that Dex410 effectively inhibited the Streptococcus mutans biofilm growth in coverage, biomass, and water-soluble glucan (WSG) by more than 80, 90, and 95 %, respectively. The animal experiment revealed that for short-term use (1.5 months), both Dex410 and the commercial mouthwash Biotene (Laclede Professional Products, Gardena, CA, USA) had a significant inhibitory effect on caries (p = 0.0008 and 0.0001, respectively), while for long-term use (3 months), only Dex410 showed significant inhibitory effect on dental caries (p = 0.005). The dextranase Dex410 from a marine-derived Arthrobacter sp. strain possessed the enzyme properties suitable to human oral environment and applicable to oral hygiene products.


Assuntos
Arthrobacter/enzimologia , Cárie Dentária/tratamento farmacológico , Dextranase/metabolismo , Dextranase/farmacologia , Animais , Organismos Aquáticos/enzimologia , Biofilmes/efeitos dos fármacos , Cárie Dentária/prevenção & controle , Dextranase/uso terapêutico , Feminino , Dados de Sequência Molecular , Ratos Wistar , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia
18.
J Adv Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782298

RESUMO

INTRODUCTION: The rapid development of next-generation sequencing (NGS)-based single-cell RNA sequencing (scRNA-seq) allows for detecting and quantifying gene expression in a high-throughput manner, providing a powerful tool for comprehensively understanding cellular function in various biological processes. However, the NGS-based scRNA-seq only quantifies gene expression and cannot reveal the exact transcript structures (isoforms) of each gene due to the limited read length. On the other hand, the long read length of third-generation sequencing (TGS) technologies, including Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), enable direct reading of intact cDNA molecules. OBJECTIVES: Both ONT and PacBio have been used in conjunction with scRNA-seq, but their performance in single-cell analyses has not been systematically evaluated. METHODS: To address this, we generated ONT and PacBio data from the same single-cell cDNA libraries containing different amount of cells. RESULTS: Using NGS as a control, we assessed the performance of each platform in cell type identification. Additionally, the reliability in identifying novel isoforms and allele-specific gene/isoform expression by both platforms was verified, providing a systematic evaluation to design the sequencing strategies in single-cell transcriptome studies. CONCLUSION: Beyond gene expression analysis, which the NGS-based scRNA-seq only affords, TGS-based scRNA-seq achieved gene splicing analyses, identifying novel isoforms. Attribute to higher sequencing quality of PacBio, it outperforms ONT in accuracy of novel transcripts identification and allele-specific gene/isoform expression.

19.
J Agric Food Chem ; 72(6): 3008-3016, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301119

RESUMO

Streptococcus thermophilus FUA329 converts ellagic acid (EA) to urolithin A (Uro-A), which is not autonomously converted by the gut microbiota to produce highly bioavailable and multibiologically active Uro-A in urolithin metabotype 0 (UM-0) populations. We consider that Streptococcus thermophilus FUA329 has the potential to be developed as a probiotic. Therefore, we utilized S. thermophilus FUA329 for in vitro cofermentation with gut microbiota. The results revealed that strain FUA329 increased the production of EA-converted Uro-A during in vitro cofermentation with the human gut microbiota of different urolithin metabotypes (UMs), with a significant increase in the production of Uro-A in the experimental group of UM-0. In addition, changes in the in vitro cofermentation microbial community were determined using high-throughput sequencing. Strain FUA329 modulated the structure and composition of the gut microbiota in different UMs, thereby significantly increasing the abundance of beneficial microbiota in the gut microbiota while decreasing the abundance of harmful microbiota. Of greatest interest was the significant increase in the abundance of Actinobacteria phylum after the cofermentation of strain FUA329 with UM-0 gut microbiota, which might be related to the significant increase in the production of Uro-A.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Streptococcus thermophilus , Cumarínicos/química , Ácido Elágico
20.
J Food Sci ; 89(4): 1976-1987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454630

RESUMO

Seafood is highly perishable and has a short shelf-life. This study investigated the effect of chitosan and alginate (CH-SA) coating combined with the cell-free supernatant of Streptococcus thermophilus FUA329 (CFS) as a preservative on the quailty of white shrimp (Litopenaeus vannamei) refrigerated at 4° for 0, 3, 6, 9, 12, 15 days. Freshly shrimps were randomly divided into four groups: the CFS group (400 mL); the CH-SA group (1% chitosan/1% alginate); the CFS-CH-SA group (1% chitosan/1% alginate with 400 mL CFS) are treatment groups, and the control group (400 mL sterile water). The CFS-CH-SA coating effectively suppressed microbial growth total viable count and chemical accumulation (pH, total volatile basic nitrogen, thiobarbituric acid reactive substance) compared with the control. Additionally, the CFS-CH-SA coating improved the texture and sensory characteristics of shrimp during storage. The coated shrimp exhibited significantly reduced water loss (p < 0.05). The combination of CH-SA coating with CFS treatment can extend the shelf life of shrimp. PRACTICAL APPLICATION: Recently, edible films have received more consideration as a promising method to enhance the shelf life of seafood. The presence of Lactic acid bacteria metabolites in edible films reduces spoilage and improves consumer health. Our findings encourage the application of edible coating incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 to design multifubctional foods and preserve the qualities of shrimp.


Assuntos
Quitosana , Conservação de Alimentos , Conservação de Alimentos/métodos , Alginatos , Quitosana/farmacologia , Quitosana/química , Streptococcus thermophilus , Expectativa de Vida , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA