Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 236, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142946

RESUMO

BACKGROUND: Identification of the motifs bound by a transcription factor (TF) is important to reveal the function of TF. Previously, we built a transcription factor centered yeast one hybrid (TF-Centered Y1H) that could identify the motifs bound by a target TF. However, that method was difficult to comprehensively identify all the motifs bound by a TF. RESULTS: Here, we build an improved TF-Centered Y1H to comprehensively determine the motifs bound by a target TF. Recombination-mediated cloning in yeast was performed to construct a saturated prey library that contains 7 random base insertions. After TF-Centered Y1H screening, all the positive clones were pooled together to isolate pHIS2 vector. The insertion regions of pHIS2 were PCR amplified and the PCR product was subjected to high-throughput sequencing. The insertion sequences were then retrieved and analyzed using MEME program to identify the potential motifs bound by the TF. Using this technology, we studied the motifs bound by an ethylene-responsive factor (BpERF2) from birch. In total, 22 conserved motifs were identified, and most of them are novel cis-acting elements. Both the yeast one hybrid and electrophoretic mobility shift assay verified that the obtained motifs could be bound by BpERF2. In addition, chromatin immunoprecipitation (ChIP) study further suggested that the identified motifs can be bound by BpERF2 in cells of birch. These results together suggested that this technology is reliable and has biological significance. CONCLUSION: This method will have wide application in DNA-protein interaction studies.


Assuntos
Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Motivos de Nucleotídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA