Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 38(10): e25081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38884333

RESUMO

BACKGROUND: The global spread of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) poses a significant concern. Acquisition of antimicrobial resistance genes leads to resistance against several antibiotics, limiting treatment options. We aimed to study ESBL-producing and CRE transmission in clinical settings. METHODS: From clinical samples, 227 ESBL-producing and CRE isolates were obtained. The isolates were cultured on bacterial media and confirmed by VITEK 2. Antibiograms were tested against several antibiotics using VITEK 2. The acquired resistance genes were identified by PCR. RESULTS: Of the 227 clinical isolates, 145 (63.8%) were Klebsiella pneumoniae and 82 (36.1%) were Escherichia coli; 76 (33.4%) isolates were detected in urine, 57 (25.1%) in pus swabs, and 53 (23.3%) in blood samples. A total of 58 (70.7%) ESBL-producing E. coli were resistant to beta-lactams, except for carbapenems, and 17.2% were amikacin-resistant; 29.2% of E. coli isolates were resistant to carbapenems. A total of 106 (73.1%) ESBL-producing K. pneumoniae were resistant to all beta-lactams, except for carbapenems, and 66.9% to ciprofloxacin; 38 (26.2%) K. pneumoniae were resistant to carbapenems. Colistin emerged as the most effective antibiotic against both bacterial types. Twelve (20.6%) E. coli isolates were positive for blaCTX-M, 11 (18.9%) for blaTEM, and 8 (33.3%) for blaNDM. Forty-six (52.3%) K. pneumoniae isolates had blaCTX-M, 27 (18.6%) blaTEM, and 26 (68.4%) blaNDM. CONCLUSION: This study found a high prevalence of drug-resistant ESBL-producing and CRE, highlighting the need for targeted antibiotic use to combat resistance.


Assuntos
Antibacterianos , Carbapenêmicos , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Humanos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Adolescente , Adulto Jovem , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Criança , Pré-Escolar , Farmacorresistência Bacteriana/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338683

RESUMO

MicroRNAs (miRNAs) are involved in the modulation of pathogenic genes by binding to their mRNA sequences' 3' untranslated regions (3'UTR). Interleukin-6 (IL-6) is known to promote cancer progression and treatment resistance. In this study, we aimed to explore the therapeutic effects of gold nanoparticles (GNP) against IL-6 overexpression and the modulation of miRNA-26a-5p in breast cancer (BC) cells. GNP were synthesized using the trisodium citrate method and characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). To predict the binding of miR-26a-5p in the IL-6 mRNA's 3'UTR, we utilized bioinformatics algorithms. Luciferase reporter clone assays and anti-miRNA-26a-5p transfection were employed to validate the binding of miR26a-5p in the IL-6 mRNA's 3'UTR. The activity of RelA and NF-κBp50 was assessed and confirmed using Bay 11-7082. The synthesized GNP were spherical with a mean size of 28.3 nm, exhibiting high stability, and were suitable for BC cell treatment. We found that miR-26a-5p directly regulated IL-6 overexpression in MCF-7 cells activated with PMA. Treatment of MCF-7 cells with GNP resulted in the inhibition of IL-6 overexpression and secretion through the increase of miR26a-5p. Furthermore, GNP deactivated NF-κBp65/NF-κBp50 transcription activity. The newly engineered GNP demonstrated safety and showed promise as a therapeutic approach for reducing IL-6 overexpression. The GNP suppressed IL-6 overexpression and secretion by deactivating NF-κBp65/NF-κBp50 transcription activity and upregulating miR-26a-5p expression in activated BC cells. These findings suggest that GNP have potential as a therapeutic intervention for BC by targeting IL-6 expression and associated pathways.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , MicroRNAs , NF-kappa B , Feminino , Humanos , Regiões 3' não Traduzidas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ouro , Interleucina-6/genética , Interleucina-6/metabolismo , Nanopartículas Metálicas/química , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834917

RESUMO

Skin cancers, especially melanomas, present a formidable diagnostic and therapeutic challenge to the scientific community. Currently, the incidence of melanomas shows a high increase worldwide. Traditional therapeutics are limited to stalling or reversing malignant proliferation, increased metastasis, or rapid recurrence. Nonetheless, the advent of immunotherapy has led to a paradigm shift in treating skin cancers. Many state-of-art immunotherapeutic techniques, namely, active vaccination, chimeric antigen receptors, adoptive T-cell transfer, and immune checkpoint blockers, have achieved a considerable increase in survival rates. Despite its promising outcomes, current immunotherapy is still limited in its efficacy. Newer modalities are now being explored, and significant progress is made by integrating cancer immunotherapy with modular nanotechnology platforms to enhance its therapeutic efficacy and diagnostics. Research on targeting skin cancers with nanomaterial-based techniques has been much more recent than other cancers. Current investigations using nanomaterial-mediated targeting of nonmelanoma and melanoma cancers are directed at augmenting drug delivery and immunomodulation of skin cancers to induce a robust anticancer response and minimize toxic effects. Many novel nanomaterial formulations are being discovered, and clinical trials are underway to explore their efficacy in targeting skin cancers through functionalization or drug encapsulation. The focus of this review rivets on theranostic nanomaterials that can modulate immune mechanisms toward protective, therapeutic, or diagnostic approaches for skin cancers. The recent breakthroughs in nanomaterial-based immunotherapeutic modulation of skin cancer types and diagnostic potentials in personalized immunotherapies are discussed.


Assuntos
Melanoma , Neoplasias , Neoplasias Cutâneas , Humanos , Medicina de Precisão , Neoplasias Cutâneas/terapia , Neoplasias/patologia , Melanoma/patologia , Imunoterapia Adotiva , Imunoterapia/métodos
4.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764365

RESUMO

Frequent consumption of fruits and vegetables in the daily diet may alleviate the risk of developing chronic diseases. Daucus carota L. (carrot), Beta vulgaris L. (beetroot) Phyllanthus emblica L. (amla), and Lycopersicon esculentum M (tomatoes) are traditionally consumed functional foods that contain a high concentration of antioxidants, ascorbic acid, polyphenols, and numerous phytochemicals. This study assessed how three distinct preparation methods affect the phenolic, flavonoid, carotenoid, and ascorbic acid contents, antioxidant level, and cytotoxicity of the combined fruit extract. The fruit samples were taken in the ratio of carrot (6): beetroot (2): tomato (1.5): amla (0.5) and processed into a lyophilized slurry (LS) extract, lyophilized juice (LJ) extract, and hot-air oven-dried (HAO) extract samples. The sample extracts were assessed for their phytoconstituent concentrations and antioxidant and cytotoxic potential. The total phenolic content in LS, LJ, and HAO extracts was 171.20 ± 0.02, 120.73 ± 0.02, and 72.05 ± 0.01 mg gallic acid equivalent/100 g, respectively and the total flavonoid content was 23.635 ± 0.003, 20.754 ± 0.005, and 18.635 ± 0.005 mg quercetin equivalent/100 g, respectively. Similarly, total ascorbic acid content, carotenoids, and antioxidant potential were higher in the LS and LJ extracts than in HAO. Overall, the LS extract had a substantially higher concentration of phytochemicals and antioxidants, as well as higher cytotoxic potential, compared to the LJ and HAO extracts. The LS extract was tested in the MKN-45 human gastric cancer cell line to demonstrate its effective antioxidant potential and cytotoxicity. Hence, lyophilization (freezing) based techniques are more effective than heat-based techniques in preserving the phytoconstituents and their antioxidant and cytotoxic potential.


Assuntos
Beta vulgaris , Daucus carota , Phyllanthus emblica , Solanum lycopersicum , Neoplasias Gástricas , Humanos , Antioxidantes/análise , Phyllanthus emblica/química , Phyllanthus emblica/metabolismo , Daucus carota/metabolismo , Beta vulgaris/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Ácido Ascórbico/análise , Fenóis/farmacologia , Fenóis/análise , Flavonoides/farmacologia , Flavonoides/análise , Carotenoides/farmacologia , Carotenoides/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Frutas/química
5.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830168

RESUMO

Cancer cells are able to proliferate in an unregulated manner. There are several mechanisms involved that propel such neoplastic transformations. One of these processes involves bypassing cell death through changes in gene expression and, consequently, cell growth. This involves a complex epigenetic interaction within the cell, which drives it towards oncogenic transformations. These epigenetic events augment cellular growth by potentially altering chromatin structures and influencing key gene expressions. Therapeutic mechanisms have been developed to combat this by taking advantage of the underlying oncogenic mechanisms through chemical modulation. Camptothecin (CPT) is an example of this type of drug. It is a selective topoisomerase I inhibitor that is effective against many cancers, such as colorectal cancer. Previously, we successfully formulated a magnetic nanocarrier-conjugated CPT with ß-cyclodextrin and iron NPs (Fe3O4) cross-linked using EDTA (CPT-CEF). Compared to CPT alone, it boasts higher efficacy due to its selective targeting and increased solubility. In this study, we treated HT29 colon cancer cells with CPT-CEF and attempted to investigate the cytotoxic effects of the formulation through an epigenetic perspective. By using RNA-Seq, several differentially expressed genes were obtained (p < 0.05). Enrichr was then used for the over-representation analysis, and the genes were compared to the epigenetic roadmap and histone modification database. The results showed that the DEGs had a high correlation with epigenetic modifications involving histone H3 acetylation. Furthermore, a subset of these genes was shown to be associated with the Wnt/ß-catenin signaling pathway, which is highly upregulated in a large number of cancer cells. These genes could be investigated as downstream therapeutic targets against the uncontrolled proliferation of cancer cells. Further interaction analysis of the identified genes with the key genes of the Wnt/ß-catenin signaling pathway in colorectal cancer identified the direct interactors and a few transcription regulators. Further analysis in cBioPortal confirmed their genetic alterations and their distribution across patient samples. Thus, the findings of this study reveal that colorectal cancer could be reversed by treatment with the CPT-CEF nanoparticle-conjugated nanocarrier through an epigenetic mechanism.


Assuntos
Camptotecina , Neoplasias Colorretais , Genes Neoplásicos , Histonas , Nanocápsulas , Proteínas de Neoplasias , Via de Sinalização Wnt/efeitos dos fármacos , Camptotecina/química , Camptotecina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células HT29 , Histonas/genética , Histonas/metabolismo , Humanos , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
6.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500845

RESUMO

Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in ß-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.


Assuntos
Antineoplásicos Fitogênicos/química , Camptotecina/química , Neoplasias do Colo/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Camptotecina/farmacologia , Linhagem Celular Tumoral , Ciclodextrinas/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica , Biblioteca Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Nucleoproteínas/genética , Nucleoproteínas/metabolismo
7.
Medicina (Kaunas) ; 57(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356991

RESUMO

Background and Objectives: Matrix metalloproteinases (MMP) have been implicated as major determinants of tumour growth and metastasis, which are considered two of the main hallmarks of cancer. The interaction of MMP8 and other signalling molecules within and adjacent tumoral tissues, including immune cells, are rather elusive, particularly of adenocarcinoma cell type. In this study, we aimed to investigate the role of MMP8 in non-small cell lung cancer proliferation and invasiveness potential. Materials and Methods: We individually lipofected with two different single guide RNA (sgRNAs) that specifically targeted on MMP8, with CRISPR-Cas 9 protein into the cells. Results: Our results clearly indicated that the lipofection of these complexes could lead to reduced ability of A549 cells to survive and proliferate to form colonies. In addition, when compared to non-transfected cells, the experimental cell groups receiving sgRNAs demonstrated relatively decreased migration rate, hence, wider wound gaps in scratch assay. The quantitative real time-polymerase chain reaction (qRT-PCR) demonstrated significant reduction in the MAP-K, survivin and PI3-K gene expression. MMP8 might have protective roles over tumour growth and spread in our body. Conclusions: The delivery of sgRNAs targeting on the MMP8 gene could induce tumour cell death and arrest cell migratory activity.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/genética , Metaloproteinase 8 da Matriz , Invasividade Neoplásica , RNA Guia de Cinetoplastídeos
8.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974904

RESUMO

Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.


Assuntos
Retinopatia Diabética , Glaucoma , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Neurite Óptica , Retinose Pigmentar , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/terapia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/terapia , Humanos , Células-Tronco Mesenquimais/patologia , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Neurite Óptica/terapia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia
9.
Lab Invest ; 94(12): 1312-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25365203

RESUMO

Cigarette smoking enhances oxidative stress and airway inflammation in asthma, the mechanisms of which are largely unknown. Myeloid-derived regulatory cells (MDRC) are free radical producing immature myeloid cells with immunoregulatory properties that have recently been demonstrated as critical regulators of allergic airway inflammation. NO (nitric oxide)-producing immunosuppressive MDRC suppress T-cell proliferation and airway-hyper responsiveness (AHR), while the O2(•-) (superoxide)-producing MDRC are proinflammatory. We hypothesized that cigarette smoke (CS) exposure may impact MDRC function and contribute to exacerbations in asthma. Exposure of bone marrow (BM)-derived NO-producing MDRC to CS reduced the production of NO and its metabolites and inhibited their potential to suppress T-cell proliferation. Production of immunoregulatory cytokine IL-10 was significantly inhibited, while proinflammatory cytokines IL-6, IL-1ß, TNF-α and IL-33 were enhanced in CS-exposed BM-MDRC. Additionally, CS exposure increased NF-κB activation and induced BM-MDRC-mediated production of O2(•-), via NF-κB-dependent pathway. Intratracheal transfer of smoke-exposed MDRC-producing proinflammatory cytokines increased NF-κB activation, reactive oxygen species and mucin production in vivo and exacerbated AHR in C57BL/6 mice, mice deficient in Type I IFNR and MyD88, both with reduced numbers of endogenous MDRC. Thus CS exposure modulates MDRC function and contributes to asthma exacerbation and identifies MDRC as potential targets for asthma therapy.


Assuntos
Hiper-Reatividade Brônquica/etiologia , Células Mieloides/fisiologia , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Transferência Adotiva , Animais , Células da Medula Óssea/fisiologia , Células Cultivadas , Interleucina-33 , Interleucinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Óxido Nítrico/biossíntese , Espécies Reativas de Oxigênio/metabolismo
10.
Biomolecules ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785983

RESUMO

BACKGROUND: Peroxynitrite (ONOO-) is an oxidant linked with several human pathologies. Apigenin, a natural flavonoid known for its health benefits, remains unexplored in relation to ONOO- effects. This study investigated the potential of apigenin to structurally protect fibrinogen, an essential blood clotting factor, from ONOO--induced damage. METHODS: Multi-approach analyses were carried out where fibrinogen was exposed to ONOO- generation while testing the efficacy of apigenin. The role of apigenin against ONOO--induced modifications in fibrinogen was investigated using UV spectroscopy, tryptophan or tyrosine fluorescence, protein hydrophobicity, carbonylation, and electrophoretic analyses. RESULTS: The findings demonstrate that apigenin significantly inhibits ONOO--induced oxidative damage in fibrinogen. ONOO- caused reduced UV absorption, which was reversed by apigenin treatment. Moreover, ONOO- diminished tryptophan and tyrosine fluorescence, which was effectively restored by apigenin treatment. Apigenin also reduced the hydrophobicity of ONOO--damaged fibrinogen. Moreover, apigenin exhibited protective effects against ONOO--induced protein carbonylation. SDS-PAGE analyses revealed that ONOO-treatment eliminated bands corresponding to fibrinogen polypeptide chains Aα and γ, while apigenin preserved these changes. CONCLUSIONS: This study highlights, for the first time, the role of apigenin in structural protection of human fibrinogen against peroxynitrite-induced nitrosative damage. Our data indicate that apigenin offers structural protection to all three polypeptide chains (Aα, Bß, and γ) of human fibrinogen. Specifically, apigenin prevents the dislocation or breakdown of the amino acids tryptophan, tyrosine, lysine, arginine, proline, and threonine and also prevents the exposure of hydrophobic sites in fibrinogen induced by ONOO-.


Assuntos
Apigenina , Fibrinogênio , Estresse Nitrosativo , Ácido Peroxinitroso , Fibrinogênio/metabolismo , Fibrinogênio/química , Apigenina/farmacologia , Apigenina/química , Humanos , Ácido Peroxinitroso/química , Estresse Nitrosativo/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Carbonilação Proteica/efeitos dos fármacos , Tirosina/química , Tirosina/metabolismo , Estresse Oxidativo/efeitos dos fármacos
11.
Nutr Metab (Lond) ; 21(1): 26, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755627

RESUMO

Neurodegenerative diseases represent one of the utmost imperative well-being health issues and apprehensions due to their escalating incidence of mortality. Natural derivatives are more efficacious in various preclinical models of neurodegenerative illnesses. These natural compounds include phytoconstituents in herbs, vegetables, fruits, nuts, and marine and freshwater flora, with remarkable efficacy in mitigating neurodegeneration and enhancing cognitive abilities in preclinical models. According to the latest research, the therapeutic activity of natural substances can be increased by adding phytoconstituents in nanocarriers such as nanoparticles, nanogels, and nanostructured lipid carriers. They can enhance the stability and specificity of the bioactive compounds to a more considerable extent. Nanotechnology can also provide targeting, enhancing their specificity to the respective site of action. In light of these findings, this article discusses the biological and therapeutic potential of natural products and their bioactive derivatives to exert neuroprotective effects and some clinical studies assessing their translational potential to treat neurodegenerative disorders.

12.
Cancers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37568652

RESUMO

Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.

13.
Front Immunol ; 14: 1228458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720228

RESUMO

Objective: Triple-negative breast cancer (TNBC) is a very aggressive form of cancer that grows and spreads very fast and generally relapses. Therapeutic options of TNBC are limited and still need to be explored completely. Gold nanoparticles conjugated with citrate (citrate-AuNPs) are reported to have anticancer potential; however, their role in regulating microRNAs (miRNAs) in TNBC has never been investigated. This study investigated the potential of citrate-AuNPs against tumorigenic inflammation via modulation of miRNAs in TNBC cells. Methods: Gold nanoparticles were chemically synthesized using the trisodium-citrate method and were characterized by UV-Vis spectrophotometry and dynamic light scattering studies. Targetscan bioinformatics was used to analyze miRNA target genes. Levels of miRNA and mRNA were quantified using TaqMan assays. The pairing of miRNA in 3'untranslated region (3'UTR) of mRNA was validated by luciferase reporter clone, containing the entire 3'UTR of mRNA, and findings were further re-validated via transfection with miRNA inhibitors. Results: Newly synthesized citrate-AuNPs were highly stable, with a mean size was 28.3 nm. The data determined that hsa-miR155-5p is a direct regulator of SOCS1 (suppressor-of-cytokine-signaling) expression and citrate-AuNPs inhibits SOCS1 mRNA/protein expression via modulating hsa-miR155-5p expression. Transfection of TNBC MDA-MB-231 cells with anti-miR155-5p markedly increased SOCS1 expression (p<0.001), while citrate-AuNPs treatment significantly inhibited anti-miR155-5p transfection-induced SOCS1 expression (p<0.05). These findings were validated by IFN-γ-stimulated MDA-MB-231 cells. Moreover, the data also determined that citrate-AuNPs also inhibit IFN-γ-induced NF-κB p65/p50 activation in MDA-MB-231 cells transfected with anti-hsa-miR155-5p. Conclusion: Newly generated citrate-AuNPs were stable and non-toxic to TNBC cells. Citrate-AuNPs inhibit IFN-γ-induced SOCS1 mRNA/protein expression and deactivate NF-κB p65/50 activity via negative regulation of hsa-miR155-5p. These novel pharmacological actions of citrate-AuNPs on IFN-γ-stimulated TNBC cells provide insights that AuNPs inhibit IFN-γ induced inflammation in TNBC cells by modulating the expression of microRNAs.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Interferon gama/farmacologia , Ouro , Neoplasias de Mama Triplo Negativas/genética , NF-kappa B , Regiões 3' não Traduzidas , Recidiva Local de Neoplasia , Citratos , Ácido Cítrico , Proteínas Supressoras da Sinalização de Citocina , Proteína 1 Supressora da Sinalização de Citocina/genética , MicroRNAs/genética
14.
Int J Health Sci (Qassim) ; 17(5): 31-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692994

RESUMO

Objective: We determined the association between sacrum displacement and ground reaction force (GRF) during walking on a level surface and identify the sub-phase of gait cycle most affected by GRF. The kinematic parameters of angular displacement of sacrum bone in three directions were measured and a correlation was derived to integrate the effect of GRF to sacrum displacement. Furthermore, gender variation in the sacrum bone configuration that induces the GRF to shift in one direction was determined. Methods: Forty healthy university students were evaluated for a normal gait pattern using the Qualysys motion capture system or a motion analysis system (MAS). The synchronization between MAS and force plate was done through computer software for the three-dimensional analysis (3D) of the force and angular displacement. Results: A positive correlation in the vertical direction was observed in the early and late phases of the stance phase in females. In males, a positive correlation was demonstrated in the middle and late phase of the stance phase. However, a positive correlation in the anteroposterior direction during the middle part of the stance phase was found only among the male group. Conclusion: Incorporation of strength training exercises help to increase the rotator muscle strength of the trunk and lower extremities in both genders. In the male group, flexors and extensors of the trunk and lower extremities in the middle part need to be focused during strength training, especially for athletes. This would be useful in decreasing the incidence of sports injuries.

15.
Biology (Basel) ; 12(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372062

RESUMO

OBJECTIVE: Breast cancer (BC) is the most common malignancy in females globally. Matrix metalloproteinase-9 (MMP-9) is crucial to the invasion, progression and spread of BC. Gold nanoparticles (AuNPs) have an anti-tumorigenic role, but their therapeutic role in microRNAs (miRNAs) regulation has not been explored. This study determined the potential of AuNPs against MMP-9 overexpression/production and miRNA-204-5p regulation in BC cells. METHODS: AuNPs were newly engineered, and their stability was analyzed using the zeta potential, polydispersity index, surface-plasmon-resonance peak and transmission electron microscopy. A bioinformatics algorithm was used to predict the pairing of miRNA in the 3'untranslated-region (3'UTR) of MMP-9 mRNA. TaqMan assays were carried out to quantify miRNA and mRNA, whereas MMP-9-specific immunoassays and gelatin zymography were used to determine protein secretion and activity. The binding of miRNA in MMP-9 mRNA 3'UTR was verified by luciferase reporter clone assays and transfection with anti-miRNAs. In addition, NF-κBp65 activity was determined and confirmed with parthenolide treatment. RESULTS: Engineered AuNPs were highly stable and spherical in shape, with a mean size of 28.3 nm. Tested in MCF-7 BC cells, microRNA-204-5p directly regulates MMP-9. AuNPs inhibit PMA-induced MMP-9 mRNA and protein via hsa-miR-204-5p upregulation. Anti-miR-204 transfected MCF-7 cells demonstrated enhanced MMP-9 expression (p < 0.001), while AuNPs treatment attenuated MMP-9 expression in a dose-dependent manner (p < 0.05). Moreover, AuNPs also inhibit PMA-induced NF-κBp65 activation in anti-hsa-miR-204 transfected MCF-7 cells. CONCLUSION: Engineered AuNPs were stable and non-toxic to BC cells. AuNPs inhibit PMA-induced MMP-9 expression, production and activation via NF-κBp65 deactivation and hsa-miR-204-5p upregulation. These novel therapeutic potentials of AuNPs on stimulated BC cells provide novel suggestions that AuNPs inhibit carcinogenic activity via inverse regulation of microRNAs.

16.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713337

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) has become a global health crisis, and the urgent need for effective treatments is evident. One potential target for COVID-19 therapeutics is the main protease (Mpro) of SARS­CoV­2, an essential enzyme for viral replication. Natural compounds have been explored as a source of potential inhibitors for Mpro due to their safety and availability. In this study, we employed a computational approach to screen a library of phytoconstituents and identified potential Mpro inhibitors based on their binding affinities and molecular interactions. The top-ranking compounds were further validated through molecular dynamics simulations (MDS) and free energy calculations. As a result of the above procedures, we identified two phytoconstituents, Khelmarin B and Neogitogenin, with appreciable binding affinity and specificity towards the Mpro binding pocket. Our results suggest that Khelmarin B and Neogitogenin could potentially serve as Mpro inhibitors and have the potential to be developed as COVID-19 therapeutics. Further experimental studies are required to confirm the efficacy and safety of these compounds.Communicated by Ramaswamy H. Sarma.

17.
PLoS One ; 17(9): e0273159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155640

RESUMO

Assessment of hip joint reaction force (JRF) is one of the analytical methods that can enable an understanding of the healthy walking index and the propensity towards disease. In this study, we have designed software, Analysis Q Hip Force (AQHF), to analyze the data retrieved from the mathematical equations for calculating the JRF and ground reaction force (GRF) that act on the hip joint during the early part of the stance phase. The stance phase is considered the least stable sub-phase during walking on level ground, and the gait stability is sequentially minimized during walking on elevated ramps. We have calculated the JRF and GRF values of walking stances on varied inclinations. The data obtained from these calculations during walking on elevated ramps were exported from mathematical equations to Q Hip Force software as two separate values, namely the JRF data and GRF data of the hip joint. The Q Hip Force software stores the two reaction force data in a text file, which allows the import and easy readability of the analyzed data with the AQHF application. The input and output data from the AQHF software were used to investigate the effect of different walking ramps on the magnitude of the hip JRF and GRF. The result of this study demonstrates a significant correlation between the JRF/GRF values and healthy walking indices till a ramp elevation of 70°. The software is designed to calculate and extrapolate data to analyze the possibility of stress in the hip joint. The framework developed in this study shows promise for preclinical and clinical applications. Studies are underway to use the results of JRF and GRF values as a diagnostic and prognostic tools in different diseases.


Assuntos
Marcha , Articulação do Joelho , Fenômenos Biomecânicos , Articulação do Quadril , Software , Caminhada
18.
Contrast Media Mol Imaging ; 2022: 4202623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965620

RESUMO

S100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function. Twenty-one SNP data sets were screened for nonsynonymous mutations and subsequently subjected to deleterious mutation prediction using different computational tools. The screened deleterious mutations were analyzed for their changes in functionality and their interaction with the tumor suppressor protein Tp53 by protein-protein docking analysis. The structural effects were studied using the 3DMissense mutation tool to estimate the solvation energy and torsion angle of the screened mutations on the predicted structures. In our study, 21 deleterious nonsynonymous mutations were screened, including F72V, E74G, L5P, D25E, N65S, A28V, A8D, S20L, L58P, and K26N were found to be remarkably conserved by exhibiting the interaction either with the EF-hand 1 or EF-hand 2 domain. The solvation and torsion values significantly deviated for the mutant-type structures with S20L, N65S, and F72L mutations and showed a marked reduction in their binding affinity with the Tp53 protein. Hence, these deleterious mutations might serve as prospective targets for diagnosing and developing personalized treatments for cancer and other related diseases.


Assuntos
Neoplasias , Polimorfismo de Nucleotídeo Único , Humanos , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética
19.
Expert Rev Mol Med ; 13: e39, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22172201

RESUMO

Mycobacterium tuberculosis (Mtb) is a metabolically flexible pathogen that has the extraordinary ability to sense and adapt to the continuously changing host environment experienced during decades of persistent infection. Mtb is continually exposed to endogenous reactive oxygen species (ROS) as part of normal aerobic respiration, as well as exogenous ROS and reactive nitrogen species (RNS) generated by the host immune system in response to infection. The magnitude of tuberculosis (TB) disease is further amplified by exposure to xenobiotics from the environment such as cigarette smoke and air pollution, causing disruption of the intracellular prooxidant-antioxidant balance. Both oxidative and reductive stresses induce redox cascades that alter Mtb signal transduction, DNA and RNA synthesis, protein synthesis and antimycobacterial drug resistance. As reviewed in this article, Mtb has evolved specific mechanisms to protect itself against endogenously produced oxidants, as well as defend against host and environmental oxidants and reductants found specifically within the microenvironments of the lung. Maintaining an appropriate redox balance is critical to the clinical outcome because several antimycobacterial prodrugs are only effective upon bioreductive activation. Proper homeostasis of oxido-reductive systems is essential for Mtb survival, persistence and subsequent reactivation. The progress and remaining deficiencies in understanding Mtb redox homeostasis are also discussed.


Assuntos
Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Radicais Livres/metabolismo , Homeostase , Humanos , Pulmão/metabolismo , Mycobacterium tuberculosis/patogenicidade , Oxirredução , Estresse Oxidativo , Tuberculose/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA