Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889382

RESUMO

Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of ß-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-ß production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer's disease.


Assuntos
Escopolamina , Triterpenos , Animais , Modelos Animais de Doenças , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Estresse Oxidativo , Escopolamina/efeitos adversos , Triterpenos/uso terapêutico
2.
Polymers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050412

RESUMO

Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol (PVA) solution. Calcium alginate, Hydroxyl propyl methylcellulose (HPMC), acrylic acid and chondroitin sulfate were used in the preparation of hydrogels. Fourier transform infrared (FTIR) analysis showed no incompatibilities between drug and excipients used in the preparation of formulations. The hydrogels were characterized for size and surface morphology. Drug encapsulation efficiency was measured by Ultraviolet-visible (UV-VIS) spectroscopy. In vitro release studies were carried out using dissolution apparatus. The formulated hydrogels were then compared with the marketed product in vivo using rabbits. The result indicates that prepared hydrogels have a uniform size with a porous surface. The esomeprazole encapsulation efficiency of the prepared hydrogels was found to be 83.1 ± 2.16%. The esomeprazole-loaded hydrogel formulations showed optimum and Pharmacopeial acceptable range swelling behavior. The release of esomeprazole is controlled for 24 h (85.43 ± 0.32% in 24 h). The swelling and release of drug results make the prepared hydrogels a potential candidate for the controlled delivery of esomeprazole. The release of the drug from prepared hydrogel followed the super case transport-2 mechanism. The in vivo studies showed that prepared hydrogel formulations showed controlled and prolonged release of esomeprazole as compared to drug solution and marketed product. The formulations were kept for stability studies; there was no significant change observed in physical parameters, i.e., (appearance, color change and grittiness) at 40 °C ± 2/75% ± RH. There was a negligible difference in the drug content observed after the stability study suggested that all the formulations are stable under the given conditions for 60 days. The current study provides a valuable perspective on the controlled release profile of Hydroxyl propyl methylcellulose (HPMC) and calcium alginate-based esomeprazole hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA