Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 91(21): 14058-14065, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31552733

RESUMO

Color vision results from the interaction of retinal photopigments with reflected or transmitted visible light. The International Commission on Illumination (CIE) developed the CIE color-matching chart, which separates colors on the basis of the interaction of their spectral profiles with three retinal photopigments in the human eye. We report the development of an infrared chromaticity (CIE-IR) chart, which mimics the CIE chart, in order to discriminate between different chemicals on the basis of the interactions of their IR signatures with three different IR optical filters, instead of the retinal photopigments in the human eye. Our results demonstrate that the CIE-IR chart enables separation of different classes of chemicals, as the visible CIE chart does with color, except for those in the IR spectral region. Such results clearly show that the biomimetic sensing method based on human color vision is in fact a true analogue to color vision and that the proposed CIE-IR chart can be used as a classification method unique to this biomimetic sensing modality.


Assuntos
Visão de Cores , Cor , Humanos , Raios Infravermelhos
2.
Appl Opt ; 56(3): B198-B213, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157898

RESUMO

Regenerated surface-enhanced Raman scattering (SERS) substrates allow users the ability to not only reuse sensing surfaces, but also tailor them to the sensing application needs (wavelength of the available laser, plasmon band matching). In this review, we discuss the development of SERS substrates for response to emerging threats and some of our collaborative efforts to improve on the use of commercially available substrate surfaces. Thus, we are able to extend the use of these substrates to broader Army needs (like emerging threat response).

3.
Small ; 10(21): 4287-92, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25045064

RESUMO

The synthesis of plasmonic nanorattles with accessible electromagnetic hotspots that facilitate highly sensitive detection of chemical analytes using surface enhanced Raman scattering (SERS) is demonstrated. Raman spectra obtained from individual nanorattles demonstrate the significantly higher SERS activity compared to solid plasmonic nanostructures.

4.
Sensors (Basel) ; 13(5): 5814-25, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23653050

RESUMO

Hazard detection systems must be evaluated with appropriate test material concentrations under controlled conditions in order to accurately identify and quantify unknown residues commonly utilized in theater. The existing assortment of hazard reference sample preparation methods/techniques presents a range of variability and reproducibility concerns, making it increasingly difficult to accurately assess optically- based detection technologies. To overcome these challenges, we examined the optimization, characterization, and calibration of microdroplets from a drop-on-demand microdispenser that has a proven capability for the preparation of energetic reference materials. Research presented herein focuses on the development of a simplistic instrument calibration technique and sample preparation protocol for explosive materials testing based on drop-on-demand technology. Droplet mass and reproducibility were measured using ultraviolet-visible (UV-Vis) absorption spectroscopy. The results presented here demonstrate the operational factors that influence droplet dispensing for specific materials (e.g., energetic and interferents). Understanding these parameters permits the determination of droplet and sample uniformity and reproducibility (typical R2 values of 0.991, relative standard deviation or RSD ≤ 5%), and thus the demonstrated maturation of a successful and robust methodology for energetic sample preparation.

5.
Appl Spectrosc ; 76(2): 163-172, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34643139

RESUMO

This paper examines infrared spectroscopic effects for the standoff detection of an explosive material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), inkjet printed on an aluminum surface. Results of a spectroscopic study are described, using multiple optical setups. These setups were selected to explore how variations in the angles of incidence and collection from the surface of the material result in corresponding variations in the spectral signatures. The goal of these studies is to provide an understanding of these spectral changes since it affects standoff detection of hazardous materials on a reflective substrate. We demonstrate that variations in spectral effects are dependent on the relative surface concentration of the deposited RDX. We also show that it is reasonable to use spectroscopic data collected in a standard laboratory infrared spectrometer outfitted with a variable angle reflectometer set at 0° as reference spectra for data collected in a standoff configuration. These results are important to provide a systematic approach to understanding infrared (IR) spectra collection using standoff systems in the field, and to allow for comparison between such data, and data collected in the laboratory. Although the precise results are constrained to a specific material system (thin layers on a reflective substrate), the approach and general discussion provided are applicable to a broad range of IR standoff sensing techniques and applications.

6.
Appl Spectrosc ; 73(2): 214-220, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30347995

RESUMO

The Department of Defense (DOD) and first responder communities are evaluating and developing optical systems for the detection and identification of explosives and components used for assembling homemade explosives (HMEs). Emerging detection technologies must be evaluated with authentic hazard material concentrations to ensure their accurate and reliable use in the field. In this work, infrared (IR) reflectance spectra over the spectral rage of 1000-1700 cm-1 were collected for different concentrations of inkjet-printed RDX (cyclotrimethylenetrinitramine) samples deposited onto aluminum substrates. A plot of the integrated area of both the symmetric and asymmetric NO2 vibrational bands for RDX on aluminum exhibited good linearity over the concentration range 20-500 µg/cm2. Detection limits for RDX on an aluminum surface were calculated to be 10.7 µg/cm2 for the symmetric NO2 vibrational band and 1.4 µg/cm2 for the asymmetric NO2 vibrational band. Evaluation of the NO2 vibrational band areas at different locations of the RDX array demonstrated that the samples exhibited good homogeneity across the surface. The concentration of an unknown sample of RDX on aluminum was determined using the fitted equations; results showed good agreement between the calculated and actual RDX surface concentration. The lot-to-lot variation of RDX on the aluminum surface was compared using the long wavelength infrared (LWIR) spectral band areas for two different lots of standards printed at the same RDX surface concentration. Results showed excellent lot-to-lot agreement indicating good reproducibility of the standards for RDX.

7.
Appl Spectrosc ; 68(3): 287-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24666945

RESUMO

The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.

8.
Appl Spectrosc ; 67(4): 396-403, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23601539

RESUMO

We present the results of a three-year collaboration between the U.S. Army Edgewood Chemical Biological Center and the U.S. Army Research Laboratory-Aldelphi Laboratory Center on the evaluation of selected nanometallic surfaces developed for the Defense Advanced Research Projects Agency Surface-Enhanced Raman Scattering (SERS) Science and Technology Fundamentals program. The primary role of the two Army labs was to develop the analytical and spectroscopic figures of merit to unambiguously compare the sensitivity and reproducibility of various SERS substrates submitted by the program participants. We present the design and implementation of an evaluation protocol for SERS active surfaces enabling an enhancement value calculation from which different substrates can be directly compared. This method was established to: (1) collect physical and spectral characterization data from the small number of substrates (performer supplied) typically encountered, and (2) account for the complex fabrication technique and varying nature of the substrate platforms encountered within this program.


Assuntos
Nanoestruturas/química , Prata/química , Análise Espectral Raman/métodos , Curva ROC , Reprodutibilidade dos Testes
9.
Appl Spectrosc ; 66(6): 628-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22732532

RESUMO

The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (ß-phase). We report the polymorphic shifts observed between α- and ß-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.


Assuntos
Substâncias Explosivas/química , Análise Espectral Raman/métodos , Triazinas/química , Cristalização , Modelos Moleculares , Impressão , Padrões de Referência , Análise Espectral Raman/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA