RESUMO
Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light-matter coupling1,2. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz cavities3 and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment.
RESUMO
Quantum mechanics revolutionized chemists' understanding of molecular structure. In contrast, the kinetics of molecular reactions in solution are well described by classical, statistical theories. To reveal how the dynamics of chemical systems transition from quantum to classical, we study femtosecond proton transfer in a symmetric molecule with two identical reactant sites that are spatially apart. With the reaction launched from a superposition of two local basis states, we hypothesize that the ensuing motions of the electrons and nuclei will proceed, conceptually, in lockstep as a superposition of probability amplitudes until decoherence collapses the system to a product. Using ultrafast spectroscopy, we observe that the initial superposition state affects the reaction kinetics by an interference mechanism. With the aid of a quantum dynamics model, we propose how the evolution of nuclear wavepackets manifests the unusual intersite quantum correlations during the reaction.
Assuntos
Elétrons , Prótons , Cinética , Estrutura Molecular , Física , Teoria QuânticaRESUMO
The quantum dynamics of excited-state intramolecular proton transfer (ESIPT) is studied using a multilevel vibronic Hamiltonian and the Lindblad master equation. We simulate time-resolved fluorescence spectroscopy of 2-(2'-hydroxyphenyl) benzothiazole (HBT) and 10-hydroxybenzo[h]quinoline (HBQ), which suggests that the underlying mechanism behind the initial ultrafast rise and decay in the spectra is electronic state population that evolves simultaneously with proton wave packet dynamics. The results predict that the initial rise and decay signals at different wavelengths vary significantly with system properties in terms of their shape, the time, and the intensity of the maximum. These findings provide clues for data interpretation, mechanism validation, and control of the dynamics, and the model serves as an attempt toward clarifying ESIPT by direct comparison to time-resolved spectroscopy.
RESUMO
In organic bulk heterojunction materials, charge delocalization has been proposed to play a vital role in the generation of free carriers by effectively reducing the Coulomb attraction via an interfacial charge transfer exciton (CTX). Pump-push-probe (PPP) experiments produced evidence that the excess energy given by a push pulse enhances delocalization, thereby increasing photocurrent. However, previous studies have employed near-infrared push pulses in the range â¼0.4-0.6 eV, which is larger than the binding energy of a typical CTX. This raises the doubt that the push pulse may directly promote dissociation without involving delocalized states. Here, we perform PPP experiments with mid-infrared push pulses at energies that are well below the binding energy of a CTX state (0.12-0.25 eV). We identify three types of CTXs: delocalized, localized, and trapped. The excitation resides over multiple polymer chains in delocalized CTXs, while it is restricted to a single chain (albeit maintaining a degree of intrachain delocalization) in localized CTXs. Trapped CTXs are instead completely localized. The pump pulse generates a "hot" delocalized CTX, which promptly relaxes to a localized CTX and eventually to trapped states. We find that photo-exciting localized CTXs with push pulses resonant to the mid-infrared charge transfer absorption can promote delocalization and, in turn, contribute to the formation of long-lived charge separated states. On the other hand, we found that trapped CTXs are non-responsive to the push pulses. We hypothesize that delocalized states identified in prior studies are only accessible in systems where there is significant interchain electronic coupling or regioregularity that supports either inter- or intrachain polaron delocalization. This, in turn, emphasizes the importance of engineering the micromorphology and energetics of the donor-acceptor interface to exploit the full potential of a material for photovoltaic applications.
RESUMO
Molecular polaritons are hybrid states of photonic and molecular character that form when molecules strongly interact with light. Strong coupling tunes energy levels and, importantly, can modify molecular properties (e.g., photoreaction rates), opening an avenue for novel polariton chemistry. In this Perspective, we focus on the collective aspects of strongly coupled molecular systems and how this pertains to the dynamical response of such systems, which, though of key importance for attaining modified function under polariton formation, is still not well-understood. We discuss how the ultrafast time and spectral resolution make pump-probe spectroscopy an ideal tool to reveal the energy-transfer pathways from polariton states to other molecular states of functional interest. Finally, we illustrate how analyzing the free (rather than electronic) energy structure in molecular polariton systems may provide new clues into how energy flows and thus how strong coupling may be exploited.
RESUMO
It has long been recognized that visible light harvesting in Peridinin-Chlorophyll-Protein is driven by the interplay between the bright (S2) and dark (S1) states of peridinin (carotenoid), along with the lowest-lying bright (Qy) and dark (Qx) states of chlorophyll-a. Here, we analyse a chromophore cluster in the crystal structure of Peridinin-Chlorophyll-Protein, in particular, a peridinin-peridinin and a peridinin-chlorophyll-a dimer, and present quantum chemical evidence for excited states that exist beyond the confines of single peridinin and chlorophyll chromophores. These dark multichromophoric states, emanating from the intermolecular packing native to Peridinin-Chlorophyll-Protein, include a correlated triplet pair comprising neighbouring peridinin excitations and a charge-transfer interaction between peridinin and the adjacent chlorophyll-a. We surmise that such dark multichromophoric states may explain two spectral mysteries in light-harvesting pigments: the sub-200-fs singlet fission observed in carotenoid aggregates, and the sub-200-fs chlorophyll-a hole generation in Peridinin-Chlorophyll-Protein.
Assuntos
Carotenoides , Clorofila , Clorofila A , ProteínasRESUMO
Strong light-matter coupling is emerging as a fascinating way to tune optical properties and modify the photophysics of molecular systems. In this work, we studied a molecular chromophore under strong coupling with the optical mode of a Fabry-Perot cavity resonant to the first electronic absorption band. Using femtosecond pump-probe spectroscopy, we investigated the transient response of the cavity-coupled molecules upon photoexcitation resonant to the upper and lower polaritons. We identified an excited state absorption from upper and lower polaritons to a state at the energy of the second cavity mode. Quantum mechanical calculations of the many-molecule energy structure of cavity polaritons suggest assignment of this state as a two-particle polaritonic state with optically allowed transitions from the upper and lower polaritons. We provide new physical insight into the role of two-particle polaritonic states in explaining transient signatures in hybrid light-matter coupling systems consistent with analogous many-body systems.
RESUMO
In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.
Assuntos
Complexos de Proteínas Captadores de Luz/fisiologia , Fotossíntese , Rhodospirillum/metabolismo , Algoritmos , Proteínas de Bactérias/química , Biofísica/métodos , Membrana Celular/metabolismo , Transferência de Energia , Luz , Microscopia de Força Atômica/métodos , Modelos Biológicos , Modelos Estatísticos , Fotoquímica/métodos , Conformação ProteicaRESUMO
The intraband exciton dynamics of molecular aggregates is a crucial initial step to determine the possibly coherent nature of energy transfer and its implications for the ensuing interband relaxation pathways in strongly coupled excitonic systems. In this work, we fully characterize the intraband dynamics in linear J-aggregates of porphyrins, good model systems for multichromophoric assemblies in biological antenna complexes. Using different 2D electronic spectroscopy schemes together with Raman spectroscopy and theoretical modeling, we provide a full characterization of the inner structure of the main one-exciton band of the porphyrin aggregates. We find that the redistribution of population within the band occurs with a characteristic time of 280 fs and dominates the modulation of an electronic coherence. While we do not find that the coupling to vibrations significantly affects the dynamics of excitonic coherence, our results suggest that exciton fluctuations are nevertheless highly correlated.
RESUMO
Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.
Assuntos
Transferência de Energia/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Modelos Químicos , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Teoria QuânticaRESUMO
The mounting evidence of recent years regarding long-lived coherent dynamics of electronic excitations in several light-harvesting antenna proteins suggests the possibility of realizing and exploiting light-initiated quantum dynamics in synthetic molecular devices based on electronic energy transfer. Inspired by the field of molecular logic, we focus this discussion on the prospect of using quantum coherence to control the direction of energy flow in a molecular circuit. As a prototype system we consider a circuit consisting of three chromophores that deliver energy to two trap chromophores. Our aim is to control to which trap the energy is more likely to be delivered. This is achieved by switching one of the circuit chromophores ON and OFF from the system, such that the direction of energy flow substantially changes from the ON and OFF states of the circuit. We find that quantum coherence can allow a significant ability to direct energy transfer in the circuit. However, when realistic levels of noise are added, quantum coherence only slightly improves the ability to direct electronic energy in comparison to a classical hopping mechanism.
RESUMO
We review various methods for measuring delocalization in light-harvesting complexes. Direct relations between inverse participation ratios (IPRs) and entanglement measures are derived. The B850 ring from the LH2 complex in Rhodopseudomonas acidophila is studied. By analysing electronic energy transfer dynamics in the B850 ring using different metrics for quantifying excitonic delocalization, we conclude that measures of entanglement are far more robust (in terms of time scale, temperature and level of decoherence) than IPRs, and are therefore more appropriate for the purpose of studying the time evolution of coherence in a system.
Assuntos
Transferência de Energia/fisiologia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/fisiologia , Modelos Biológicos , Modelos Químicos , Fotossíntese/fisiologia , Transferência de Energia/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Fotossíntese/efeitos da radiação , Teoria QuânticaRESUMO
Recent two-dimensional electronic spectroscopy (2DES) experiments have reported evidence of coherent dynamics of electronic excitations in several light-harvesting antennae. However, 2DES uses ultrafast coherent laser pulses as an excitation source; therefore, there is a current debate on whether coherent excitation dynamics is present under natural sunlight - incoherent - illumination conditions. In this letter, we show that even if incoherent light excites an electronic state with no initial quantum superpositions among excitonic states, energy transfer can proceed quantum coherently if nonequilibrium dynamics of the phonon environment takes place. Such nonequilibrium behavior manifests itself in non-Markovian evolution of electronic excitations and is typical of many photosynthetic systems. We therefore argue that light-harvesting antennae have mechanisms that could support coherent evolution under incoherent illumination.