Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(47)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39173646

RESUMO

Biomimetic artificial olfactory cilia have demonstrated potential in identifying specific volatile organic compounds linked to various diseases, including certain cancers, metabolic disorders, and respiratory conditions. These sensors may facilitate non-invasive disease diagnosis and monitoring. Cilia Motility is the coordinated movement of cilia, which are hair-like projections present on the surface of particular cells in different species. Cilia serve an important part in several biological functions, including motility, fluid movement, and sensory reception. Cilia motility is a complicated process that requires the coordinated interaction of structural components and molecular pathways. Cilia are made up of a highly structured structure known as the axoneme, which is made up of microtubules grouped in a unique pattern. The axoneme is made up of nine outer doublet microtubules and a core pair of singlet microtubules. This arrangement offers structural support and serves as a scaffold for the proteins involved in ciliary movement. Our latest endeavors investigate these Multiphysics phenomena in ciliary beating flows that are inspired by biology, utilizing copper, gold, and titania nanoparticles. We examine their functions in biological systems such as peristaltic transport computationally. Our models give precise two- and three-dimensional velocity, temperature, and concentration solutions by integrating transverse magnetohydrodynamics with laser heating. Furthermore, at the channel wall expressions, the skin friction coefficient, Sherwood number, Nusselt number and optimization of entropy generation are acquired and analyzed. Important properties of the velocity and scalar profiles are revealed by a thorough analysis of dimensionless parameters. The simplified examination provides more insight into the trapping patterns that result from the complex interaction between nanofluid rheology and optics. These findings greatly contribute to our knowledge and improvement of nanofluidic transport technologies in a variety of fields supporting industry, sustainability, and medicine. Our combined computational and experimental methodology clarifies the complex dynamics in these systems and provides design guidance for the engineering of improved fluidic devices that make use of multifunctional nanomaterial interfaces and peristaltic motion.


Assuntos
Cílios , Cílios/metabolismo , Cílios/fisiologia , Entropia , Materiais Biomiméticos/química , Eletro-Osmose , Cobre/química , Biomimética/métodos , Ouro/química , Titânio/química
2.
J Fluoresc ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888659

RESUMO

The current model offers valuable insights for materials science, heat exchangers, renewable energy production, nanotechnology, manufacturing, medicinal treatments, and environmental engineering. The findings of this study have the potential to improve material design, increase heat transfer efficiency across various systems, enhance energy conversion processes, and drive advancements in nanotechnology, medicinal treatments, and engineering design. The goal of the current research is to analyze the effects of thermal radiation and the volume fraction of nanoparticles in MoS2-Ag/engine oil-based hybrid nanofluid flow passing through a cylinder. After performing a substantial similarity transformation, the nonlinear dimensionless framework is recast as ODEs. The Yamada-Ota and Xue models are then applied to the dimensionless equation setup, which is numerically solved using the BVP4C approach. The resulting velocity and temperature fields, corresponding to various parameters, are examined and compared across both models. This investigation demonstrates a significant variation in heat transfer rates between the Yamada-Ota and Xue models, with the former having a larger impact. The velocity and temperature fields decrease as the magnetic field parameter increases in both nanofluids. However, as the magnetic field parameter values grow, the velocity fields in the two nanofluids behave differently. The Yamada-Ota and Xue models are used to determine the behavior of the hybrid nanofluid flow over a nonlinear extended cylinder. In all situations, the velocity and temperature fields exhibit superior decay characteristics.

3.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144784

RESUMO

A topological index is a number derived from a molecular structure (i.e., a graph) that represents the fundamental structural characteristics of a suggested molecule. Various topological indices, including the atom-bond connectivity index, the geometric-arithmetic index, and the Randic index, can be utilized to determine various characteristics, such as physicochemical activity, chemical activity, and thermodynamic properties. Meanwhile, the non-commuting graph ΓG of a finite group G is a graph where non-central elements of G are its vertex set, while two different elements are edge connected when they do not commute in G. In this article, we investigate several topological properties of non-commuting graphs of finite groups, such as the Harary index, the harmonic index, the Randic index, reciprocal Wiener index, atomic-bond connectivity index, and the geometric-arithmetic index. In addition, we analyze the Hosoya characteristics, such as the Hosoya polynomial and the reciprocal status Hosoya polynomial of the non-commuting graphs over finite subgroups of SL(2,C). We then calculate the Hosoya index for non-commuting graphs of binary dihedral groups.

4.
Entropy (Basel) ; 24(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36554137

RESUMO

In this paper, based on the discrete lifetime distribution, the residual and past of the Tsallis and Renyi extropy are introduced as new measures of information. Moreover, some of their properties and their relation to other measures are discussed. Furthermore, an example of a uniform distribution of the obtained models is given. Moreover, the softmax function can be used as a discrete probability distribution function with a unity sum. Thus, applying those measures to the softmax function for simulated and real data is demonstrated. Besides, for real data, the softmax data are fit to a convenient ARIMA model.

5.
Heliyon ; 10(11): e32144, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947448

RESUMO

The present paper aims to study the complete, horizontal and diagonal lifts of metallic structures in the cotangent bundle. Furthermore, the Nijenhuis tensor of a metallic structure is calculated and its integrability conditions by means of partial differential equations are established.

6.
Sci Rep ; 13(1): 4679, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949147

RESUMO

In present times modern electronic devices often come across thermal difficulties as an outcome of excessive heat production or reduction in surface area for heat exclusion. The current study is aimed to inspect the role of iron (III) oxide in heat transfer enhancement over the rotating disk in an axisymmetric flow. Water is utilized as base fluid conveying nano-particle over the revolving axisymmetric flow mechanism. Additionally, the computational fluid dynamics (CFD) approach is taken into consideration to design and compute the present problem. For our convenience, two-dimensional axisymmetric flow configurations are considered to illustrate the different flow profiles. For radial, axial, and tangential velocity profiles, the magnitude of the velocity, streamlines, and surface graphs are evaluated with the similarity solution in the computational fluid dynamics module. The solution of dimensionless equations and the outcomes of direct simulations in the CFD module show a comparable solution of the velocity profile. It is observed that with an increment in nanoparticle volumetric concentration the radial velocity decline where a tangential motion of flow enhances. Streamlines stretch around the circular surface with the passage of time. The high magnetization force [Formula: see text] resist the free motion of the nanofluid around the rotating disk. Such research has never been done, to the best of the researchers' knowledge. The outcomes of this numerical analysis could be used for the design, control, and optimization of numerous thermal engineering systems, as described above, due to the intricate physics of nanofluid under the influences of magnetic field and the inclusion of complex geometry. Ferrofluids are metallic nanoparticle colloidal solutions. These kinds of fluids do not exist in nature. Depending on their purpose, ferrofluids are produced using a variety of processes. One of the most essential characteristics of ferrofluids is that they operate in a zero-gravity environment. Ferrofluids have a wide range of uses in engineering and medicine. Ferrofluids have several uses, including heat control loudspeakers and frictionless sealing. In the sphere of medicine, however, ferrofluid is employed in the treatment of cancer via magneto hyperthermia.

7.
Sci Rep ; 13(1): 7795, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179414

RESUMO

Heat and mass transfer are crucial to numerous technical and commercial operations, including air conditioning, machinery power collectors, crop damage, processing food, heat transfer mechanisms, and cooling, among numerous others. The fundamental purpose of this research is to use the Cattaneo-Christov heat flux model to disclose an MHD flow of ternary hybrid nanofluid through double discs. The results of a heat source and a magnetic field are therefore included in a system of PDEs that model the occurrences. These are transformed into an ODE system using similarity replacements. The first-order differential equations that emerge are then handled using the computational technique Bvp4c shooting scheme. The Bvp4c function in MATLAB is used to numerically solve the governing equations. The influence of the key important factors on velocity, temperature, nanoparticles concentration, and is illustrated visually. Furthermore, increasing the volume fraction of nanoparticles improves thermal conduction, increasing the heat transfer rate at the top disc. The graph indicates that a slight increase in melting parameter rapidly declines the velocity distribution profile of nanofluid. The temperature profile was boosted due to the growing outcomes of the Prandtl number. The increasing variations of the thermal relaxation parameter decline the thermal distribution profile. Furthermore, for some exceptional instances, the obtained numerical answers were compared to previously disclosed data, yielding a satisfactory compromise. We believe that this discovery will have far-reaching ramifications in engineering, medicine, and the field of biomedical technology. Additionally, this model can be used to examine biological mechanisms, surgical techniques, nano-pharmacological drug delivery systems, and the therapy of diseases like cholesterol using nanotechnology.

8.
Sci Rep ; 13(1): 5369, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005425

RESUMO

The dominant characteristics of hybrid nanofluids, including rapid heat transfer rates, superior electrical and thermal conductivity, and low cost, have effectively piqued the interest of global researchers. The current study will look at the impacts of a silver and cobalt ferrite-based hybrid nanofluid with MHD between a revolving disk and cone. The collection of partial differentiable equations is converted into a set of ODEs via similarity transformations. We used the Homotopy analysis approach from the BVPh 2.0 package to solve the ordinary differential equations. The volume proportion of nanoparticles increases and the temperature distribution profile also increased. It is more efficient for metallurgical, medicinal, and electrical applications. Furthermore, the antibacterial capabilities of silver nanoparticles might be used to restrict the growth of bacteria. A circulating disc with a stationary cone has been identified to provide the optimal cooling of the cone disc device while maintaining the outer edge temperature constant. This study's findings might be useful in materials science and engineering. The usage of hybrid nanofluid in heat transfer and heat pumps, coolants in manufacturing and production, producing cooling, refrigerators, solar thermal collectors, and heating, air conditioning, and climate control applications are only a few examples.

9.
Heliyon ; 9(3): e14303, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36942239

RESUMO

The artificial intelligence based neural networking with Back Propagated Levenberg-Marquardt method (NN-BPLMM) is developed to explore the modeling of double-diffusive free convection nanofluid flow considering suction/injection, Brownian motion and thermophoresis effects past an inclined permeable sheet implanted in a porous medium. By applying suitable transformations, the PDEs presenting the proposed problem are transformed into ordinary ones. A reference dataset of NN-BPLMM is fabricated for multiple influential variants of the model representing scenarios by applying Lobatto III-A numerical technique. The reference data is trained through testing, training and validation operations to optimize and compare the approximated solution with desired (standard) results. The reliability, steadiness, capability and robustness of NN-BPLMM is authenticated through MSE based fitness curves, error through histograms, regression illustrations and absolute errors. The investigations suggest that the temperature enhances with the upsurge in thermophoresis impact during suction and decays for injection, whereas increasing Brownian effect decreases the temperature in the presence of wall suction and reverse behavior is seen for injection. The best measures of performance in form of mean square errors are attained as 7.1058 × 10 - 10 , 2.9262 × 10 - 10 , 1.1652 × 10 - 08 , 1.5657 × 10 - 10 and 5.5652 × 10 - 10 against 969, 824, 467, 277 and 650 iterations. The comparative study signifies the authenticity of proposed solver with the absolute errors about 10-7 to 10-3 for all influential parameters results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA