Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241785

RESUMO

The newly FDA-approved drug, Axitinib, is an effective therapy against RTKs, but it possesses severe adverse effects like hypertension, stomatitis, and dose-dependent toxicity. In order to ameliorate Axitinib's downsides, the current study is expedited to search for energetically stable and optimized pharmacophore features of 14 curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) derivatives. The rationale behind the selection of curcumin derivatives is their reported anti-angiogenic and anti-cancer properties. Furthermore, they possessed a low molecular weight and a low toxicity profile. In the current investigation, the pharmacophore model-based drug design, facilitates the filtering of curcumin derivatives as VEGFR2 interfacial inhibitors. Initially, the Axitinib scaffold was used to build a pharmacophore query model against which curcumin derivatives were screened. Then, top hits from pharmacophore virtual screening were subjected to in-depth computational studies such as molecular docking, density functional theory (DFT) studies, molecular dynamics (MD) simulations, and ADMET property prediction. The findings of the current investigation revealed the substantial chemical reactivity of the compounds. Specifically, compounds S8, S11, and S14 produced potential molecular interactions against all four selected protein kinases. Docking scores of -41.48 and -29.88 kJ/mol for compounds S8 against VEGFR1 and VEGFR3, respectively, were excellent. Whereas compounds S11 and S14 demonstrated the highest inhibitory potential against ERBB and VEGFR2, with docking scores of -37.92 and -38.5 kJ/mol against ERBB and -41.2 and -46.5 kJ/mol against VEGFR-2, respectively. The results of the molecular docking studies were further correlated with the molecular dynamics simulation studies. Moreover, HYDE energy was calculated through SeeSAR analysis, and the safety profile of the compounds was predicted through ADME studies.


Assuntos
Neoplasias Colorretais , Curcumina , Humanos , Simulação de Acoplamento Molecular , Curcumina/farmacologia , Farmacóforo , Axitinibe , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Curcuma/metabolismo , Detecção Precoce de Câncer , Simulação de Dinâmica Molecular , Ligantes
2.
Biomed Pharmacother ; 110: 409-419, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30530043

RESUMO

Sexual dysfunction in the epileptic patient is difficult to confirm whether it is ailment or therapy related. Antiepileptic drugs often use in reproductive age, through reproductive progress and maturation. On the other side, cold-pressed oils are rich in bioactive phytochemicals with health-promoting traits. The target of this work was to appraise the sexual dysfunction of antiepileptic Topiramate (TPM) and cold pressed ginger oil (CPGO) as antiepileptic alternative medicine in male mice. Fifty-four adult male albino mice were divided into nine groups (n = 6 mice). One group given saline and used as negative control; another one was given corn oil as vehicle. Six groups administered orally with TPM or CPGO at 100, 200 and 400 mg/kg. Moreover, group of animals co-administrated orally CPGO with TPM (400 mg/kg) to study their interaction. Fatty acid profile and tocols composition of CPGO were determined. in vitro assays were undertaken to evaluate radical scavenging traits of CPGO utilizing sable 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and galvinoxyl radicals. The study investigated antioxidant and oxidative stress markers, sexual hormones levels, mRNA levels of vascular endothelial growth factor (Vegfa), synaptonemal complex protein (Sycp3), Wilms tumor gene (Wt1) as well as histopathological and immunohistochemical examination. Strong radical scavenging potential of CPGO against stable DPPH· and galvinoxyl radicals was recorded. The results revealed that TPM caused a dose-dependent reduction in the antioxidant activities and testosterone content, while, malonaldehyde (MDA) and nitric oxide (NO) as oxidative stress markers were elevated. Vegfa and Sycp3 mRNA expression down-regulated at all Topiramate tested doses, but Wt1 up-regulated at 400 mg/kg. TPM (400 mg/kg) revealed histological alterations associated with strong positive Bax immune reactive spermatogoneal and Leydig cells. Ginger oil elevated the CAT and SOD (antioxidant enzymes), serum testosterone and diminished the oxidative stress, up regulated the expression of Vegfa and Sycp3 and down-regulated the Wt1 expression. Meanwhile, CPGO revealed no histopathological alterations and no Bax immune-reactive cells. CPGO co-administration with TPM (400 mg/kg) attenuated the TPM toxicity. High doses of TPM may exhibit sexual dysfunction but CPGO is safe and has androgenic property. CPGO co-administration could protect the antiepileptic patient from the TPM sexual dysfunction.


Assuntos
Anticonvulsivantes/toxicidade , Hormônios Esteroides Gonadais/biossíntese , Óleos de Plantas/administração & dosagem , Testículo/metabolismo , Topiramato/toxicidade , Zingiber officinale , Animais , Expressão Gênica , Hormônios Esteroides Gonadais/genética , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Óleos de Plantas/isolamento & purificação , Testículo/efeitos dos fármacos , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA