Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Behav Pharmacol ; 33(6): 418-426, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947068

RESUMO

The prescription opioid oxycodone is widely used for the treatment of pain in humans. Oxycodone misuse is more common among people with an anxiety disorder than those without one. Therefore, oxycodone might be misused for its anxiolytic properties. We investigated if oxycodone affects anxiety-like behavior in adult male and female rats. The rats were treated with oxycodone (0.178, 0.32, 0.56, or 1 mg/kg), and anxiety-like behavior was investigated in the elevated plus-maze test. Immediately after the elevated plus-maze test, a small open field test was conducted to determine the effects of oxycodone on locomotor activity. In the elevated plus-maze test, oxycodone increased the percentage of time spent on the open arms, the percentage of open arm entries, time on the open arms, open arm entries, and the distance traveled. The males treated with vehicle had a lower percentage of open arm entries than the females treated with vehicle, and oxycodone treatment led to a greater increase in the percentage of open arm entries in the males than females. Furthermore, the females spent more time on the open arms, made more open arm entries, spent less time in the closed arms, and traveled a greater distance than the males. In the small open field test, treatment with oxycodone did not affect locomotor activity or rearing. Sex differences were observed; the females traveled a greater distance and displayed more rearing than the males. In conclusion, oxycodone decreases anxiety-like behavior in rats, and oxycodone has a greater anxiolytic-like effect in males than females.


Assuntos
Ansiolíticos , Teste de Labirinto em Cruz Elevado , Animais , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal , Feminino , Humanos , Locomoção , Masculino , Aprendizagem em Labirinto , Oxicodona/farmacologia , Ratos
2.
J Neurosci ; 40(30): 5871-5891, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32576620

RESUMO

Manganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.SIGNIFICANCE STATEMENT Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson's disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
3.
J Neurosci ; 39(17): 3249-3263, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30804095

RESUMO

Social recognition, the ability to recognize individuals that were previously encountered, requires complex integration of sensory inputs with previous experience. Here, we use a variety of approaches to discern how oxytocin-sensitive neurons in the PFC exert descending control over a circuit mediating social recognition in mice. Using male mice with Cre-recombinase directed to the oxytocin receptor gene (Oxtr), we revealed that oxytocin receptors (OXTRs) are expressed on glutamatergic neurons in the PFC, optogenetic stimulation of which elicited activation of neurons residing in several mesolimbic brain structures. Optogenetic stimulation of axons in the BLA arising from OXTR-expressing neurons in the PFC eliminated the ability to distinguish novel from familiar conspecifics, but remarkably, distinguishing between novel and familiar objects was unaffected. These results suggest that an oxytocin-sensitive PFC to BLA circuit is required for social recognition. The implication is that impaired social memory may manifest from dysregulation of this circuit.SIGNIFICANCE STATEMENT Using mice, we demonstrate that optogenetic activation of the neurons in the PFC that express the oxytocin receptor gene (Oxtr) impairs the ability to distinguish between novel and familiar conspecifics, but the ability to distinguish between novel and familiar objects remains intact. Subjects with autism spectrum disorders (ASDs) have difficulty identifying a person based on remembering facial features; however, ASDs and typical subjects perform similarly when remembering objects. In subjects with ASD, viewing the same face increases neural activity in the PFC, which may be analogous to the optogenetic excitation of oxytocin receptor (OXTR) expressing neurons in the PFC that impairs social recognition in mice. The implication is that overactivation of OXTR-expressing neurons in the PFC may contribute to ASD symptomology.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Ocitocina/metabolismo , Reconhecimento Psicológico/fisiologia , Comportamento Social , Animais , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Receptores de Ocitocina/genética
4.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G673-G681, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003605

RESUMO

Impaired manganese (Mn) homeostasis can result in excess Mn accumulation in specific brain regions and neuropathology. Maintaining Mn homeostasis and detoxification is dependent on effective Mn elimination. Specific metal transporters control Mn homeostasis. Human carriers of mutations in the metal transporter ZIP14 and whole body Zip14-knockout (WB-KO) mice display similar phenotypes, including spontaneous systemic and brain Mn overload and motor dysfunction. Initially, it was believed that Mn accumulation due to ZIP14 mutations was caused by impaired hepatobiliary Mn elimination. However, liver-specific Zip14-KO mice did not show systemic Mn accumulation or motor deficits. ZIP14 is highly expressed in the small intestine and is localized to the basolateral surface of enterocytes. Thus, we hypothesized that basolaterally localized ZIP14 in enterocytes provides another route for the elimination of Mn. Using wild-type and intestine-specific Zip14-KO (I-KO) mice, we have shown that ablation of intestinal Zip14 is sufficient to cause systemic and brain Mn accumulation. The lack of intestinal ZIP14-mediated Mn excretion was compensated for by the hepatobiliary system; however, it was not sufficient to maintain Mn homeostasis. When supplemented with extra dietary Mn, I-KO mice displayed some motor dysfunctions and brain Mn accumulation based on both MRI imaging and chemical analysis, thus demonstrating the importance of intestinal ZIP14 as a route of Mn excretion. A defect in intestinal Zip14 expresssion likely could contribute to the Parkinson-like Mn accumulation of manganism.NEW & NOTEWORTHY Mn-induced parkinsonism is recognized as rising in frequency because of both environmental factors and genetic vulnerability; yet currently, there is no cure. We provide evidence in an integrative animal model that basolaterally localized ZIP14 regulates Mn excretion and detoxification and that deletion of intestinal ZIP14 leads to systemic and brain Mn accumulation, providing robust evidence for the indispensable role of intestinal ZIP14 in Mn excretion.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Transtornos Neurológicos da Marcha/induzido quimicamente , Mucosa Intestinal/metabolismo , Manganês/toxicidade , Animais , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte de Cátions/genética , Relação Dose-Resposta a Droga , Genótipo , Inflamação/induzido quimicamente , Manganês/administração & dosagem , Camundongos , Camundongos Knockout , Membrana Serosa/metabolismo
5.
Nicotine Tob Res ; 22(2): 213-223, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30958557

RESUMO

INTRODUCTION: Tobacco use improves mood states and smoking cessation leads to anhedonia, which contributes to relapse. Animal studies have shown that noncontingent nicotine administration enhances brain reward function and leads to dependence. However, little is known about the effects of nicotine self-administration on the state of the reward system. METHODS: To investigate the relationship between nicotine self-administration and reward function, rats were prepared with intracranial self-stimulation electrodes and intravenous catheters. The rats were trained on the intracranial self-stimulation procedure and allowed to self-administer 0.03 mg/kg/infusion of nicotine. All rats self-administered nicotine daily for 10 days (1 hour/day) and were then switched to an intermittent short access (ShA, 1 hour/day) or long access (LgA, 23 hour/day) schedule (2 days/week, 5 weeks). RESULTS: During the first 10 daily, 1-hour sessions, nicotine self-administration decreased the reward thresholds, which indicates that nicotine potentiates reward function. After switching to the intermittent LgA or ShA schedule, nicotine intake was lower in the ShA rats than the LgA rats. The LgA rats increased their nicotine intake over time and they gradually consumed a higher percentage of their nicotine during the light phase. The nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine induced a larger increase in reward thresholds (ie, anhedonia) in the LgA rats than the ShA rats. In the LgA rats, nAChR blockade with mecamylamine decreased nicotine intake for 2 hours and this was followed by a rebound increase in nicotine intake. CONCLUSIONS: A brief period of nicotine self-administration enhances reward function and a high level of nicotine intake leads to dependence. IMPLICATIONS: These animal studies indicate that there is a strong relationship between the level of nicotine intake and brain reward function. A high level of nicotine intake was more rewarding than a low level of nicotine intake and nicotine dependence was observed after long, but not short, access to nicotine. This powerful combination of nicotine reward and withdrawal makes it difficult to quit smoking. Blockade of nAChRs temporarily decreased nicotine intake, but this was followed by a large rebound increase in nicotine intake. Therefore, nAChR blockade might not decrease the use of combustible cigarettes or electronic cigarettes.


Assuntos
Anedonia/efeitos dos fármacos , Nicotina/administração & dosagem , Recompensa , Autoestimulação/efeitos dos fármacos , Anedonia/fisiologia , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Eletrodos Implantados , Masculino , Mecamilamina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Ratos , Ratos Wistar , Receptores Nicotínicos/fisiologia , Autoadministração/métodos , Autoestimulação/fisiologia , Fatores de Tempo , Tabagismo/psicologia
6.
Environ Res ; 183: 109242, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097814

RESUMO

Recent studies indicate that exposure to airborne particulate matter (PM) is associated with cognitive delay, depression, anxiety, autism, and neurodegenerative diseases; however, the role of PM in the etiology of these outcomes is not well-understood. Therefore, there is a need for controlled animal studies to better elucidate the causes and mechanisms by which PM impacts these health outcomes. We assessed the effects of gestational and early life exposure to traffic-related PM on social- and anxiety-related behaviors, cognition, inflammatory markers, and neural integrity in juvenile male rats. Gestating and lactating rats were exposed to PM from a Boston (MA, USA) traffic tunnel for 5 h/day, 5 days/week for 6 weeks (3 weeks gestation, 3 weeks lactation). The target exposure concentration for the fine fraction of nebulized PM, measured as PM2.5, was 200 µg/m3. To assess anxiety and cognitive function, F1 male juveniles underwent elevated platform, cricket predation, nest building, social behavior and marble burying tests at 32-60 days of age. Upon completion of behavioral testing, multiple cytokines and growth factors were measured in these animals and their brains were analyzed with diffusion tensor MRI to assess neural integrity. PM exposure had no effect on litter size or weight, or offspring growth; however, F1 litters developmentally exposed to PM exhibited significantly increased anxiety (p = 0.04), decreased cognition reflected in poorer nest-organization (p = 0.04), and decreased social play and allogrooming (p = 0.003). MRI analysis of ex vivo brains revealed decreased structural integrity of neural tissues in the anterior cingulate and hippocampus in F1 juveniles exposed to PM (p < 0.01, p = 0.03, respectively). F1 juvenile males exposed to PM also exhibited significantly decreased plasma levels of both IL-18 (p = 0.03) and VEGF (p = 0.04), and these changes were inversely correlated with anxiety-related behavior. Chronic exposure of rat dams and their offspring to traffic-related PM during gestation and lactation decreases social behavior, increases anxiety, impairs cognition, decreases levels of inflammatory and growth factors (which are correlated with behavioral changes), and disrupts neural integrity in the juvenile male offspring. Our findings add evidence that exposure to traffic-related air pollution during gestation and lactation is involved in the etiology of autism spectrum disorder and other disorders which include social and cognitive deficits and/or increased anxiety.


Assuntos
Ansiedade , Transtorno do Espectro Autista , Sistema Nervoso , Material Particulado , Emissões de Veículos , Animais , Ansiedade/etiologia , Transtorno do Espectro Autista/epidemiologia , Boston , Modelos Animais de Doenças , Feminino , Inflamação , Lactação , Masculino , Sistema Nervoso/efeitos dos fármacos , Material Particulado/toxicidade , Ratos , Roedores , Comportamento Social , Emissões de Veículos/toxicidade
7.
Neuroimage ; 202: 116138, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472250

RESUMO

Extracellular ß-amyloid (Aß) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aß and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aß deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aß production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Hipocampo , Interleucina-6/metabolismo , Rede Nervosa , Neuritos/ultraestrutura , Substância Branca , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
8.
Neurobiol Learn Mem ; 157: 151-162, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521850

RESUMO

Numerous preclinical studies show that acute cannabinoid administration impairs cognitive performance. Almost all of this research has employed cannabinoid injections, however, whereas smoking is the preferred route of cannabis administration in humans. The goal of these experiments was to systematically determine how acute exposure to cannabis smoke affects working memory performance in a rat model. Adult male (n = 15) and female (n = 16) Long-Evans rats were trained in a food-motivated delayed response working memory task. Prior to test sessions, rats were exposed to smoke generated by burning different numbers of cannabis or placebo cigarettes, using a within-subjects design. Exposure to cannabis smoke had no effect on male rats' performance, but surprisingly, enhanced working memory accuracy in females, which tended to perform less accurately than males under baseline conditions. In addition, cannabis smoke enhanced working memory accuracy in a subgroup of male rats that performed comparably to the worst-performing females. Exposure to placebo smoke had no effect on performance, suggesting that the cannabinoid content of cannabis smoke was critical for its effects on working memory. Follow-up experiments showed that acute administration of either Δ9-tetrahydrocannabinol (0.0, 0.3, 1.0, 3.0 mg/kg) or the cannabinoid receptor type 1 antagonist rimonabant (0.0, 0.2, 0.6, 2.0 mg/kg) impaired working memory performance. These results indicate that differences in the route, timing, or dose of cannabinoid administration can yield distinct cognitive outcomes, and highlight the need for further investigation of this topic.


Assuntos
Canabinoides/administração & dosagem , Cannabis , Fumar Maconha/psicologia , Memória de Curto Prazo/efeitos dos fármacos , Animais , Canabidiol/administração & dosagem , Canabinol/administração & dosagem , Comportamento de Escolha/efeitos dos fármacos , Dronabinol/administração & dosagem , Feminino , Masculino , Ratos Long-Evans
9.
Chemphyschem ; 20(2): 216-230, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30536696

RESUMO

The noninvasive, quantitative ability of nuclear magnetic resonance (NMR) spectroscopy to characterize small molecule metabolites has long been recognized as a major strength of its application in biology. Numerous techniques exist for characterizing metabolism in living, excised, or extracted tissue, with a particular focus on 1 H-based methods due to the high sensitivity and natural abundance of protons. With the increasing use of high magnetic fields, the utility of in vivo 1 H magnetic resonance spectroscopy (MRS) has markedly improved for measuring specific metabolite concentrations in biological tissues. Higher fields, coupled with recent developments in hyperpolarization, also enable techniques for complimenting 1 H measurements with spectroscopy of other nuclei, such as 31 P and 13 C, and for combining measurements of metabolite pools with metabolic flux measurements. We compare ex vivo and in vivo methods for studying metabolism in the brain using NMR and highlight insights gained through using higher magnetic fields, the advent of dissolution dynamic nuclear polarization, and combining in vivo MRS and ex vivo NMR approaches.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Humanos
10.
Behav Brain Sci ; 42: e17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30940260

RESUMO

We agree with Borsboom et al. in challenging neurobiological reductionism, and underscore some specific strengths of a network approach. However, they do not acknowledge that a similar problem is present in current psychosocial frameworks. We discuss this challenge as well as describe valuable parallels between symptom and neurobiological network theories that will substantially augment psychopathological research when integrated.


Assuntos
Encefalopatias , Psicopatologia , Humanos , Pesquisa
11.
J Neurosci ; 37(25): 5996-6006, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28536273

RESUMO

Mutations in human ZIP14 have been linked to symptoms of the early onset of Parkinsonism and Dystonia. This phenotype is likely related to excess manganese accumulation in the CNS. The metal transporter ZIP14 (SLC39A14) is viewed primarily as a zinc transporter that is inducible via proinflammatory stimuli. In vitro evidence shows that ZIP14 can also transport manganese. To examine a role for ZIP14 in manganese homeostasis, we used Zip14 knock-out (KO) male and female mice to conduct comparative metabolic, imaging, and functional studies. Manganese accumulation was fourfold to fivefold higher in brains of Zip14 KO mice compared with young adult wild-type mice. There was less accumulation of subcutaneously administered 54Mn in the liver, gallbladder, and gastrointestinal tract of the KO mice, suggesting that manganese elimination is impaired with Zip14 ablation. Impaired elimination creates the opportunity for atypical manganese accumulation in tissues, including the brain. The intensity of MR images from brains of the Zip14 KO mice is indicative of major manganese accumulation. In agreement with excessive manganese accumulation was the impaired motor function observed in the Zip14 KO mice. These results also demonstrate that ZIP14 is not essential for manganese uptake by the brain. Nevertheless, the upregulation of signatures of brain injury observed in the Zip14 KO mice demonstrates that normal ZIP14 function is an essential factor required to prevent manganese-linked neurodegeneration.SIGNIFICANCE STATEMENT Manganese is an essential micronutrient. When acquired in excess, manganese accumulates in tissues of the CNS and is associated with neurodegenerative disease, particularly Parkinson-like syndrome and dystonia. Some members of the ZIP metal transporter family transport manganese. Using mutant mice deficient in the ZIP14 metal transporter, we have discovered that ZIP14 is essential for manganese elimination via the gastrointestinal tract, and a lack of ZIP14 results in manganese accumulation in critical tissues such as the brain, as measured by MRI, and produces signatures of brain injury and impaired motor function. Humans with altered ZIP14 function would lack this gatekeeper function of ZIP14 and therefore would be prone to manganese-related neurological diseases.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Intoxicação por Manganês/genética , Intoxicação por Manganês/metabolismo , Manganês/metabolismo , Atividade Motora/genética , Animais , Química Encefálica/genética , Feminino , Motilidade Gastrointestinal/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual , Zinco/metabolismo , Zinco/farmacologia
12.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
13.
Stroke ; 48(7): 1948-1956, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28588054

RESUMO

BACKGROUND AND PURPOSE: Targeting the prostaglandin I2 prostanoid (IP) receptor to reduce stroke injury has been hindered by the lack of selective drugs. MRE-269 is the active metabolite of selexipag showing a high selectivity toward the IP receptor. Selexipag has been recently approved for clinical use in pulmonary hypertension. We hypothesized that postischemic treatment with MRE-269 provides long-lasting neuroprotection with improved neurological outcomes in a clinically relevant rat stroke model. METHODS: Aged male Sprague-Dawley rats underwent transient middle cerebral artery occlusion and were randomly selected to receive either vehicle or MRE-269 (0.25 mg/kg) intravenously starting at 4.5 hours post ischemia. Accelerating rotarod and adhesive removal tests were conducted before and at 3, 7, 14, and 21 days after stroke. Infarct volume was quantified by magnetic resonance imaging at 48 hours and 21 days post middle cerebral artery occlusion. In parallel experiments, cerebral cortex samples from stroke and nonstroke sides from vehicle- and MRE-269-treated groups were collected at 18 hours post middle cerebral artery occlusion for molecular biology analyses. RESULTS: Quantitative magnetic resonance imaging data showed that postischemic MRE-269 treatment significantly reduced infarct volume compared with vehicle-treated rats at both 48 hours and 3 weeks after stroke. MRE-269 treatment resulted in a significant long-term recovery in both locomotor and somatosensory functions after middle cerebral artery occlusion, which was associated with a reduced weight loss in animals receiving the IP receptor agonist. Postischemic MRE-269 treatment reduced proinflammatory cytokines/chemokines and oxidative stress. Damage to the blood-brain barrier, as assessed by extravasation of immunoglobulin G to the ischemic brain, was significantly reduced by MRE-269, which was associated with a reduction in matrix metalloproteinase-9 activity in the brain of stroked aged rats given the IP agonist at 4.5 hours after ischemia onset. CONCLUSIONS: Our data suggest that targeting the IP receptor with MRE-269 is a novel strategy to reduce cerebral ischemia injury and promote long-term neurological recovery in ischemic stroke.


Assuntos
Acetatos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Epoprostenol/análise , Pirazinas/farmacologia , Receptores de Prostaglandina/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acetatos/administração & dosagem , Fatores Etários , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/imunologia , Infarto da Artéria Cerebral Média , Masculino , Pirazinas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/imunologia
14.
Neurobiol Dis ; 106: 124-132, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28673740

RESUMO

Multiple lines of evidence implicate striatal dysfunction in the pathogenesis of dystonia, including in DYT1, a common inherited form of the disease. The impact of striatal dysfunction on connected motor circuits and their interaction with other brain regions is poorly understood. Conditional knock-out (cKO) of the DYT1 protein torsinA from forebrain cholinergic and GABAergic neurons creates a symptomatic model that recapitulates many characteristics of DYT1 dystonia, including the developmental onset of overt twisting movements that are responsive to antimuscarinic drugs. We performed diffusion MRI and resting-state functional MRI on cKO mice of either sex to define abnormalities of diffusivity and functional connectivity in cortical, subcortical, and cerebellar networks. The striatum was the only region to exhibit an abnormality of diffusivity, indicating a selective microstructural deficit in cKO mice. The striatum of cKO mice exhibited widespread increases in functional connectivity with somatosensory cortex, thalamus, vermis, cerebellar cortex and nuclei, and brainstem. The current study provides the first in vivo support that direct pathological insult to forebrain torsinA in a symptomatic mouse model of DYT1 dystonia can engage genetically normal hindbrain regions into an aberrant connectivity network. These findings have important implications for the assignment of a causative region in CNS disease.


Assuntos
Corpo Estriado/diagnóstico por imagem , Distonia Muscular Deformante/diagnóstico por imagem , Distonia Muscular Deformante/metabolismo , Imageamento por Ressonância Magnética , Chaperonas Moleculares/metabolismo , Prosencéfalo/metabolismo , Animais , Água Corporal/diagnóstico por imagem , Mapeamento Encefálico , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Distonia Muscular Deformante/patologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Masculino , Camundongos Transgênicos , Chaperonas Moleculares/genética , Imagem Multimodal , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Vias Neurais/patologia , Prosencéfalo/diagnóstico por imagem , Prosencéfalo/patologia , Descanso
15.
Subst Use Misuse ; 52(4): 535-547, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28033474

RESUMO

BACKGROUND: There is need for better treatments of addictive behaviors, both substance and non-substance related, termed Reward Deficiency Syndrome (RDS). While the FDA has approved pharmaceuticals under the umbrella term Medication Assisted Treatment (MAT), these drugs are not optimal. OBJECTIVES: It is our contention that these drugs work well in the short-term by blocking dopamine function leading to psychological extinction. However, use of buprenorphine/Naloxone over a long period of time results in unwanted addiction liability, reduced emotional affect, and mood changes including suicidal ideation. METHODS: We are thus proposing a paradigm shift in addiction treatment, with the long-term goal of achieving "Dopamine Homeostasis." While this may be a laudable goal, it is very difficult to achieve. Nevertheless, this commentary briefly reviews past history of developing and subsequently, utilizing a glutaminergic-dopaminergic optimization complex [Kb220Z] shown to be beneficial in at least 20 human clinical trials and in a number of published and unpublished studies. RESULTS: It is our opinion that, while additional required studies could confirm these findings to date, the cited studies are indicative of achieving enhanced resting state functional connectivity, connectivity volume, and possibly, neuroplasticity. Conclusions/Importance: We are proposing a Reward Deficiency Solution System (RDSS) that includes: Genetic Addiction Risk Score (GARS); Comprehensive Analysis of Reported Drugs (CARD); and a glutaminergic-dopaminergic optimization complex (Kb220Z). Continued investigation of this novel strategy may lead to a better-targeted approach in the long-term, causing dopamine regulation by balancing the glutaminergic-dopaminergic pathways. This may potentially change the landscape of treating all addictions leading us to the promised land.


Assuntos
Comportamento Aditivo/fisiopatologia , Catecolaminas/fisiologia , Dopamina/metabolismo , Homeostase , Monoaminoxidase/fisiologia , Neprilisina/fisiologia , Recompensa , Comportamento Aditivo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Homeostase/fisiologia , Humanos , Neuroimagem/métodos , Neurofarmacologia/métodos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Síndrome
16.
Neurobiol Dis ; 95: 35-45, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27404940

RESUMO

Developing in vivo functional and structural neuroimaging assays in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice provide insight into the pathophysiology underlying DYT1 dystonia. In the current study, we examined in vivo functional connectivity of large-scale cortical and subcortical networks in Dyt1 KI mice and wild-type (WT) controls using resting-state functional magnetic resonance imaging (MRI) and an independent component analysis. In addition, using diffusion MRI we examined how structural integrity across the basal ganglia and cerebellum directly relates to impairments in functional connectivity. Compared to WT mice, Dyt1 KI mice revealed increased functional connectivity across the striatum, thalamus, and somatosensory cortex; and reduced functional connectivity in the motor and cerebellar cortices. Further, Dyt1 KI mice demonstrated elevated free-water (FW) in the striatum and cerebellum compared to WT mice, and increased FW was correlated with impairments in functional connectivity across basal ganglia, cerebellum, and sensorimotor cortex. The current study provides the first in vivo MRI-based evidence in support of the hypothesis that the deletion of a 3-base pair (ΔGAG) sequence in the Dyt1 gene encoding torsinA has network level effects on in vivo functional connectivity and microstructural integrity across the sensorimotor cortex, basal ganglia, and cerebellum.


Assuntos
Cerebelo/patologia , Distonia/genética , Imageamento por Ressonância Magnética , Chaperonas Moleculares/genética , Rede Nervosa/patologia , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Heterozigoto , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Knockout
17.
Immunology ; 146(2): 206-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25967648

RESUMO

This study tested the hypothesis that peripheral immune challenges will produce predictable activation patterns in the rat brain consistent with sympathetic excitation. As part of examining this hypothesis, this study asked whether central activation is dependent on capsaicin-sensitive C-fibres. We induced skin contact sensitivity immune responses with 2,4-dinitrochlorobenzene (DNCB), in the presence or absence of the acute C-fibre toxin capsaicin (8-methyl-N-vanillyl-6-nonenamide) to trigger immune responses with and without diminished activity of C-fibres. Innovative blood-oxygen-level-dependent functional magnetic resonance imaging data revealed that the skin contact sensitivity immune responses induced with DNCB were associated with localized increases in brain neuronal activity in treated rats. This response was diminished by pre-treatment with capsaicin 1 week before scans. In the same animals, we found expression of the immediate early gene c-Fos in sub-regions of the amygdala and hypothalamic sympathetic brain nuclei. Significant increases in c-Fos expression were found in the supraoptic nucleus, central amygdala and medial habenula following immune challenges. Our results support the idea that selective brain regions, some of which are associated with sympathetic function, process or modulate immune function through pathways that are partially dependent on C-fibres. Together with previous studies demonstrating the motor control pathways from brain to immune targets, these findings indicate a central neuroimmune system to monitor host status and coordinate appropriate host responses.


Assuntos
Dermatite de Contato/imunologia , Hipotálamo/imunologia , Fibras Nervosas Amielínicas/imunologia , Pele/inervação , Animais , Biomarcadores/metabolismo , Mapeamento Encefálico/métodos , Capsaicina/farmacologia , Dermatite de Contato/metabolismo , Dermatite de Contato/fisiopatologia , Dinitroclorobenzeno , Modelos Animais de Doenças , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/metabolismo , Vias Neurais/imunologia , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Regulação para Cima
18.
Int J Neuropsychopharmacol ; 18(2)2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25552431

RESUMO

BACKGROUND: Acute nicotine administration potentiates brain reward function and enhances motor and cognitive function. These studies investigated which brain areas are being activated by a wide range of doses of nicotine, and if this is diminished by pretreatment with the nonselective nicotinic receptor antagonist mecamylamine. METHODS: Drug-induced changes in brain activity were assessed by measuring changes in the blood oxygen level dependent (BOLD) signal using an 11.1-Tesla magnetic resonance scanner. In the first experiment, nicotine naïve rats were mildly anesthetized and the effect of nicotine (0.03-0.6 mg/kg) on the BOLD signal was investigated for 10 min. In the second experiment, the effect of mecamylamine on nicotine-induced brain activity was investigated. RESULTS: A high dose of nicotine increased the BOLD signal in brain areas implicated in reward signaling, such as the nucleus accumbens shell and the prelimbic area. Nicotine also induced a dose-dependent increase in the BOLD signal in the striato-thalamo-orbitofrontal circuit, which plays a role in compulsive drug intake, and in the insular cortex, which contributes to nicotine craving and relapse. In addition, nicotine induced a large increase in the BOLD signal in motor and somatosensory cortices. Mecamylamine alone did not affect the BOLD signal in most brain areas, but induced a negative BOLD response in cortical areas, including insular, motor, and somatosensory cortices. Pretreatment with mecamylamine completely blocked the nicotine-induced increase in the BOLD signal. CONCLUSIONS: These studies demonstrate that acute nicotine administration activates brain areas that play a role in reward signaling, compulsive behavior, and motor and cognitive function.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Animais , Mapeamento Encefálico , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Comportamento Compulsivo/fisiopatologia , Relação Dose-Resposta a Droga , Imageamento por Ressonância Magnética , Masculino , Mecamilamina/farmacologia , Antagonistas Nicotínicos/farmacologia , Oxigênio/sangue , Ratos Wistar , Recompensa
19.
bioRxiv ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38014219

RESUMO

The differential expression of emotional reactivity from early to late adulthood may involve maturation of prefrontal cortical responses to negative valence stimuli. In mice, age-related changes in affective behaviors have been reported, but the functional neural circuitry warrants further investigation. We assessed age variations in affective behaviors and functional connectivity in male and female C57BL6/J mice. Mice aged 10, 30 and 60 weeks (wo) were tested over 8 weeks for open field activity, sucrose preference, social interactions, fear conditioning, and functional neuroimaging. Prefrontal cortical and hippocampal tissues were excised for metabolomics. Our results indicate that young and old mice differ significantly in affective behavioral, functional connectome and prefrontal cortical-hippocampal metabolome. Young mice show a greater responsivity to novel environmental and social stimuli compared to older mice. Conversely, late middle-aged mice (60wo group) display variable patterns of fear conditioning and with re-testing with a modified context. Functional connectivity between a temporal cortical/auditory cortex network and subregions of the anterior cingulate cortex and ventral hippocampus, and a greater network modularity and assortative mixing of nodes was stronger in young versus older adult mice. Metabolome analyses identified differences in several essential amino acids between 10wo mice and the other age groups. The results support differential expression of 'emotionality' across distinct stages of the mouse lifespan involving greater prefrontal-hippocampal connectivity and neurochemistry.

20.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328104

RESUMO

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI). Utilizing the CHIMERA model, we conducted rmTBIs or sham (control) procedures on young (2.5-3 months old) and aged (22-month-old) male and female mice to model high risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposing effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean, radial, axial diffusivity, fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Inflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in aged animals. These findings provide a comprehensive understanding of the intricate interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA