Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225425

RESUMO

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema , Variação Genética
2.
Sci Rep ; 9(1): 9494, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263171

RESUMO

Landscape genetics is increasingly being used in landscape planning for biodiversity conservation by assessing habitat connectivity and identifying landscape barriers, using intraspecific genetic data and quantification of landscape heterogeneity to statistically test the link between genetic variation and landscape variability. In this study we used genetic data to understand how landscape features and environmental factors influence demographic connectedness in Europe's largest brown bear population and to assist in mitigating planned infrastructure development in Romania. Model-based clustering inferred one large and continuous bear population across the Carpathians suggesting that suitable bear habitat has not become sufficiently fragmented to restrict movement of individuals. However, at a finer scale, large rivers, often located alongside large roads with heavy traffic, were found to restrict gene flow significantly, while eastern facing slopes promoted genetic exchange. Since the proposed highway infrastructure development threatens to fragment regions of the Carpathians where brown bears occur, we develop a decision support tool based on models that assess the landscape configuration needed for brown bear conservation using wildlife corridor parameters. Critical brown bear corridors were identified through spatial mapping and connectivity models, which may be negatively influenced by infrastructure development and which therefore require mitigation. We recommend that current and proposed infrastructure developments incorporate these findings into their design and where possible avoid construction measures that may further fragment Romania's brown bear population or include mitigation measures where alternative routes are not feasible.


Assuntos
Biodiversidade , Fluxo Gênico , Modelos Genéticos , Ursidae/genética , Animais , Romênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA