Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 106(6): 861-875, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28922497

RESUMO

Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling.


Assuntos
Aspergillus fumigatus/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Mutação com Perda de Função , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
PLoS Pathog ; 11(4): e1004834, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25909486

RESUMO

Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence associated traits.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica Múltipla , Hidroximetilglutaril-CoA Redutases/metabolismo , Oxigenases de Função Mista/metabolismo , Esterol 14-Desmetilase/metabolismo , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/isolamento & purificação , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Azóis/uso terapêutico , Cruzamentos Genéticos , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento/efeitos dos fármacos , Loci Gênicos/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Larva/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Oxigenases de Função Mista/genética , Mariposas/efeitos dos fármacos , Mutação , Esterol 14-Desmetilase/genética , Análise de Sobrevida , Triazóis/farmacologia , Triazóis/uso terapêutico , Virulência/efeitos dos fármacos , Voriconazol/farmacologia , Voriconazol/uso terapêutico
3.
PLoS Pathog ; 10(10): e1004413, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329394

RESUMO

Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 ß-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy.


Assuntos
Aspergillus fumigatus/metabolismo , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Aspergilose Pulmonar/microbiologia , Fatores de Transcrição/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos
4.
PLoS Pathog ; 8(10): e1002851, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055919

RESUMO

Molecular genetic approaches typically detect recombination in microbes regardless of assumed asexuality. However, genetic data have shown the AIDS-associated pathogen Penicillium marneffei to have extensive spatial genetic structure at local and regional scales, and although there has been some genetic evidence that a sexual cycle is possible, this haploid fungus is thought to be genetically, as well as morphologically, asexual in nature because of its highly clonal population structure. Here we use comparative genomics, experimental mixed-genotype infections, and population genetic data to elucidate the role of recombination in natural populations of P. marneffei. Genome wide comparisons reveal that all the genes required for meiosis are present in P. marneffei, mating type genes are arranged in a similar manner to that found in other heterothallic fungi, and there is evidence of a putatively meiosis-specific mutational process. Experiments suggest that recombination between isolates of compatible mating types may occur during mammal infection. Population genetic data from 34 isolates from bamboo rats in India, Thailand and Vietnam, and 273 isolates from humans in China, India, Thailand, and Vietnam show that recombination is most likely to occur across spatially and genetically limited distances in natural populations resulting in highly clonal population structure yet sexually reproducing populations. Predicted distributions of three different spatial genetic clusters within P. marneffei overlap with three different bamboo rat host distributions suggesting that recombination within hosts may act to maintain population barriers within P. marneffei.


Assuntos
Genes Fúngicos Tipo Acasalamento , Micoses/microbiologia , Penicillium/genética , Penicillium/fisiologia , Reprodução Assexuada/genética , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Animais , Sudeste Asiático , Hibridização Genômica Comparativa , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Desequilíbrio de Ligação , Masculino , Meiose/genética , Camundongos , Muridae/microbiologia , Micoses/veterinária , Penicillium/isolamento & purificação , Recombinação Genética , Doenças dos Roedores/microbiologia
5.
Mycopathologia ; 178(5-6): 331-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24996522

RESUMO

We utilized RNAseq analysis of the Aspergillus fumigatus response to early hypoxic condition exposure. The results show that more than 89% of the A. fumigatus genome is expressed under normoxic and hypoxic conditions. Replicate samples were highly reproducible; however, comparisons between normoxia and hypoxia revealed that >23 and 35% of genes were differentially expressed after 30 and 120 min of hypoxia exposure, respectively. Consistent with our previous report detailing transcriptomic and proteomic responses at later time points, the results here show major repression of ribosomal function and induction of ergosterol biosynthesis, as well as activation of alternate respiratory mechanisms at the later time point. RNAseq data were used to define 32 hypoxia-specific genes, which were not expressed under normoxic conditions. Transcripts of a C6 transcription factor and a histidine kinase-response regulator were found only in hypoxia. In addition, several genes involved in the phosphoenylpyruvate and D-glyceraldehyde-3-phosphate metabolism were only expressed in hypoxia. Interestingly, a 216-bp ncRNA Afu-182 in the 3' region of insA (AFUB_064770) was significantly repressed under hypoxia with a 40-fold reduction in expression. A detailed analysis of Afu-182 showed similarity with several genes in the genome, many of which were also repressed in hypoxia. The results from this study show that hypoxia induces very early and widely drastic genome-wide responses in A. fumigatus that include expression of protein-coding and ncRNA genes. The role of these ncRNA genes in regulating the fungal hypoxia response is an exciting future research direction.


Assuntos
Aspergillus fumigatus/fisiologia , Regulação Fúngica da Expressão Gênica , RNA não Traduzido/metabolismo , Estresse Fisiológico , Anaerobiose , Aspergillus fumigatus/genética , Perfilação da Expressão Gênica , Análise de Sequência de DNA
7.
Mol Ecol ; 21(1): 57-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106836

RESUMO

As the frequency of antifungal drug resistance continues to increase, understanding the genetic structure of fungal populations, where resistant isolates have emerged and spread, is of major importance. Aspergillus fumigatus is an ubiquitously distributed fungus and the primary causative agent of invasive aspergillosis (IA), a potentially lethal infection in immunocompromised individuals. In the last few years, an increasing number of A. fumigatus isolates has evolved resistance to triazoles, the primary drugs for treating IA infections. In most isolates, this multiple-triazole-resistance (MTR) phenotype is caused by mutations in the cyp51A gene, which encodes the protein targeted by the triazoles. We investigated the genetic differentiation and reproductive mode of A. fumigatus in the Netherlands, the country where the MTR phenotype probably originated, to determine their role in facilitating the emergence and distribution of resistance genotypes. Using 20 genome-wide neutral markers, we genotyped 255 Dutch isolates including 25 isolates with the MTR phenotype. In contrast to previous reports, our results show that Dutch A. fumigatus genotypes are genetically differentiated into five distinct populations. Four of the five populations show significant linkage disequilibrium, indicative of an asexual reproductive mode, whereas the fifth population is in linkage equilibrium, indicative of a sexual reproductive mode. Notably, the observed genetic differentiation among Dutch isolates does not correlate with geography, although all isolates with the MTR phenotype nest within a single, predominantly asexual, population. These results suggest that both reproductive mode and genetic differentiation contribute to the structure of Dutch A. fumigatus populations and are probably shaping the evolutionary dynamics of drug resistance in this potentially deadly pathogen.


Assuntos
Aspergilose/epidemiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Deriva Genética , Variação Genética , Recombinação Genética , Antifúngicos/uso terapêutico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Evolução Molecular , Genótipo , Humanos , Desequilíbrio de Ligação , Testes de Sensibilidade Microbiana , Técnicas de Tipagem Micológica , Países Baixos/epidemiologia , Filogeografia , Triazóis/uso terapêutico
8.
Proteome Sci ; 10(1): 30, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22545825

RESUMO

BACKGROUND: The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. RESULTS: To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. CONCLUSIONS: The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.

9.
Nature ; 438(7071): 1151-6, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16372009

RESUMO

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.


Assuntos
Alérgenos/genética , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Genoma Fúngico , Genômica , Hipersensibilidade/microbiologia , Aspergillus fumigatus/imunologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Temperatura , Virulência/genética
10.
Nature ; 438(7071): 1157-61, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16372010

RESUMO

The genome of Aspergillus oryzae, a fungus important for the production of traditional fermented foods and beverages in Japan, has been sequenced. The ability to secrete large amounts of proteins and the development of a transformation system have facilitated the use of A. oryzae in modern biotechnology. Although both A. oryzae and Aspergillus flavus belong to the section Flavi of the subgenus Circumdati of Aspergillus, A. oryzae, unlike A. flavus, does not produce aflatoxin, and its long history of use in the food industry has proved its safety. Here we show that the 37-megabase (Mb) genome of A. oryzae contains 12,074 genes and is expanded by 7-9 Mb in comparison with the genomes of Aspergillus nidulans and Aspergillus fumigatus. Comparison of the three aspergilli species revealed the presence of syntenic blocks and A. oryzae-specific blocks (lacking synteny with A. nidulans and A. fumigatus) in a mosaic manner throughout the genome of A. oryzae. The blocks of A. oryzae-specific sequence are enriched for genes involved in metabolism, particularly those for the synthesis of secondary metabolites. Specific expansion of genes for secretory hydrolytic enzymes, amino acid metabolism and amino acid/sugar uptake transporters supports the idea that A. oryzae is an ideal microorganism for fermentation.


Assuntos
Aspergillus oryzae/genética , Genoma Fúngico , Genômica , Ácido Aspártico Endopeptidases/genética , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Cromossomos Fúngicos/genética , Sistema Enzimático do Citocromo P-450/genética , Genes Fúngicos/genética , Dados de Sequência Molecular , Filogenia , Sintenia
11.
PLoS Genet ; 4(4): e1000046, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18404212

RESUMO

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".


Assuntos
Aspergillus fumigatus/genética , Ilhas Genômicas , Alérgenos/genética , Aspergillus/classificação , Aspergillus/genética , Aspergillus/fisiologia , Aspergillus fumigatus/classificação , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/fisiologia , Cromossomos Fúngicos/genética , Eurotiales/classificação , Eurotiales/genética , Eurotiales/fisiologia , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Genoma Fúngico , Humanos , Filogenia , Especificidade da Espécie , Virulência/genética
12.
iScience ; 24(11): 103287, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34778728

RESUMO

The energy-only-market implemented in China cannot strongly support large-scale renewable energy expansion because the renewable energy expansion may disorderly phase out non-renewable power capacity. However, non-renewable power capacity, particularly the coal-fired power capacity in China, can provide vital power system adequacy needed by renewable energy expansion. We introduce capacity payments to orderly retire current coal-fired power capacity by transforming some of it into reserve capacity in order to support renewable energy expansion. Using generation and transmission expansion results from the SWITCH-China model, this paper proposes an orderly retirement path based on the assumption of implementing capacity payments. Our results show that roughly 100-200 gigawatts (GW) of coal-fired power capacity can continue to serve through 2050, and most of it is used as reserve capacity. Capacity payments of 400-700 billion yuan are needed to achieve this retirement path, and a higher adequacy requirement needs higher payments.

13.
Fungal Genet Biol ; 47(9): 736-41, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20554054

RESUMO

Fungi produce an impressive array of secondary metabolites (SMs) including mycotoxins, antibiotics and pharmaceuticals. The genes responsible for their biosynthesis, export, and transcriptional regulation are often found in contiguous gene clusters. To facilitate annotation of these clusters in sequenced fungal genomes, we developed the web-based software SMURF (www.jcvi.org/smurf/) to systematically predict clustered SM genes based on their genomic context and domain content. We applied SMURF to catalog putative clusters in 27 publicly available fungal genomes. Comparison with genetically characterized clusters from six fungal species showed that SMURF accurately recovered all clusters and detected additional potential clusters. Subsequent comparative analysis revealed the striking biosynthetic capacity and variability of the fungal SM pathways and the correlation between unicellularity and the absence of SMs. Further genetics studies are needed to experimentally confirm these clusters.


Assuntos
Mapeamento Cromossômico/métodos , Fungos/genética , Fungos/metabolismo , Genômica , Software , Análise por Conglomerados , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/enzimologia , Internet , Sensibilidade e Especificidade
14.
PLoS Pathog ; 4(9): e1000154, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18787699

RESUMO

Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus.


Assuntos
Adaptação Fisiológica/genética , Aspergilose , Aspergillus fumigatus/genética , Regulação Viral da Expressão Gênica/fisiologia , Animais , Aspergillus fumigatus/patogenicidade , Perfilação da Expressão Gênica , Genes Virais/fisiologia , Camundongos , Telômero , Virulência/genética
15.
Trends Biotechnol ; 27(3): 151-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19195728

RESUMO

Aspergillus flavus is a common saprophyte and opportunistic pathogen that produces numerous secondary metabolites. The primary objectives of the A. flavus genomics program are to reduce and eliminate aflatoxin contamination in food and feed and to discover genetic factors that contribute to plant and animal pathogenicity. A. flavus expressed sequence tags (ESTs) and whole-genome sequencing have been completed. Annotation of the A. flavus genome has revealed numerous genes and gene clusters that are potentially involved in the formation of aflatoxin and other secondary metabolites, as well as in the degradation of complex carbohydrate polymers. Analysis of putative secondary metabolism pathways might facilitate the discovery of new compounds with pharmaceutical properties, as well as new enzymes for biomass degradation.


Assuntos
Aflatoxinas/genética , Aspergillus flavus/fisiologia , Biotecnologia/métodos , Mapeamento Cromossômico/métodos , Genoma Fúngico/genética , Microbiologia Industrial/tendências , Transdução de Sinais/genética
16.
PLoS Pathog ; 3(4): e50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17432932

RESUMO

Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, DeltalaeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent DeltalaeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, DeltalaeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatus-specific mycotoxin clusters, were expressed at significantly lower levels in the DeltalaeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus) but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs), polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE) was greatly reduced in the DeltalaeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity.


Assuntos
Aspergillus fumigatus/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Sideróforos/genética , Cromossomos Fúngicos/genética , Deleção de Genes , Perfilação da Expressão Gênica , Variação Genética , Genômica , Ferro/metabolismo , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
17.
Med Mycol ; 47 Suppl 1: S34-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19291596

RESUMO

We have examined the feasibility of using array comparative genomic hybridization (aCGH) to explore intraspecific genetic variability at the genomic level in two pathogenic molds, Aspergillus fumigatus and Aspergillus flavus. Our analysis showed that strain-specific genes may comprise up to 2% of their genomes in comparison to isolates from different vegetative (heterokaryon) compatibility groups (VCGs). In contrast, isolates with the same VCG affiliations have almost identical gene content. Most isolate-specific genes are annotated as 'hypothetical' and located in a few large subtelomeric indels. The list includes highly polymorphic loci that contain putative het (heterokaryon compatibility) loci, which determine the individual's VCG during parasexual crossing. Incidentally, VCGs in both species seem to be significantly associated with either alpha or HMG mating type (Chi-square test, P=0.05). In conclusion CGH can be used to effectively to identify isolate-specific genes in Aspergillus species. Preliminary evidence suggests that gene flow in both species is largely constrained by VCG boundaries, although further VCG sampling is required to confirm this observation.


Assuntos
Aspergillus flavus/genética , Aspergillus fumigatus/genética , Hibridização Genômica Comparativa , Polimorfismo Genético , DNA Fúngico/genética , Genes Fúngicos , Humanos , Análise em Microsséries
18.
Nucleic Acids Res ; 31(1): 383-7, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12520028

RESUMO

The Conserved Domain Database (CDD) is now indexed as a separate database within the Entrez system and linked to other Entrez databases such as MEDLINE(R). This allows users to search for domain types by name, for example, or to view the domain architecture of any protein in Entrez's sequence database. CDD can be accessed on the WorldWideWeb at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. Users may also employ the CD-Search service to identify conserved domains in new sequences, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search results, and pre-computed links from Entrez's protein database, are calculated using the RPS-BLAST algorithm and Position Specific Score Matrices (PSSMs) derived from CDD alignments. CD-Searches are also run by default for protein-protein queries submitted to BLAST(R) at http://www.ncbi.nlm.nih.gov/BLAST. CDD mirrors the publicly available domain alignment collections SMART and PFAM, and now also contains alignment models curated at NCBI. Structure information is used to identify the core substructure likely to be present in all family members, and to produce sequence alignments consistent with structure conservation. This alignment model allows NCBI curators to annotate 'columns' corresponding to functional sites conserved among family members.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Sequência Conservada , Armazenamento e Recuperação da Informação , Modelos Moleculares , Alinhamento de Sequência
19.
Nucleic Acids Res ; 31(1): 474-7, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12520055

RESUMO

Three-dimensional structures are now known within most protein families and it is likely, when searching a sequence database, that one will identify a homolog of known structure. The goal of Entrez's 3D-structure database is to make structure information and the functional annotation it can provide easily accessible to molecular biologists. To this end, Entrez's search engine provides several powerful features: (i) links between databases, for example between a protein's sequence and structure; (ii) pre-computed sequence and structure neighbors; and (iii) structure and sequence/structure alignment visualization. Here, we focus on a new feature of Entrez's Molecular Modeling Database (MMDB): Graphical summaries of the biological annotation available for each 3D structure, based on the results of automated comparative analysis. MMDB is available at: http://www.ncbi.nlm.nih.gov/Entrez/structure.html.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Homologia Estrutural de Proteína , Animais , Gráficos por Computador , Imageamento Tridimensional , Estrutura Terciária de Proteína , Proteínas/química
20.
BMC Genomics ; 6: 177, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16336669

RESUMO

BACKGROUND: Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. RESULTS: Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. CONCLUSION: Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.


Assuntos
Apoptose , Fungos/genética , Sequência de Aminoácidos , Animais , Aspergillus fumigatus/genética , Fungos/fisiologia , Genes Fúngicos , Genoma Fúngico , Humanos , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Micoses/genética , Fagocitose , Filogenia , Conformação Proteica , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA