Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 592(7856): 756-762, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33408411

RESUMO

Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.


Assuntos
Evolução Biológica , Genoma , Ornitorrinco/genética , Tachyglossidae/genética , Animais , Feminino , Masculino , Mamíferos/genética , Filogenia , Cromossomos Sexuais/genética
2.
Dev Biol ; 495: 8-18, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565838

RESUMO

In the echidna, after development in utero, the egg is laid in the pouch and incubated for 10 days. During this time, the fetuses develop an egg tooth and caruncle to help them hatch. Using rare and unprecedented access to limited echidna pre- and post-hatching tissues, development of the egg tooth and caruncle were assessed by micro-CT, histology and immunofluorescence. Unlike therian tooth germs that develop by placode invagination, the echidna egg tooth developed by evagination, similar to the first teeth in some reptiles and fish. The egg tooth ankylosed to the premaxilla, rather than forming a tooth root with ligamentous attachment found in other mammals, with loss of the egg tooth associated with high levels of activity odontoclasts and apoptosis. The caruncle formed as a separate mineralisation from the adjacent nasal capsule, and as observed in birds and turtles, the nasal region epithelium on top of the nose expressed markers of cornification. Together, this highlights that the monotreme egg tooth shares many similarities with typical reptilian teeth, suggesting that this tooth has been conserved from a common ancestor of mammals and reptiles.


Assuntos
Tachyglossidae , Dente , Animais , Tachyglossidae/genética , Mamíferos , Répteis , Germe de Dente
3.
Heredity (Edinb) ; 132(1): 5-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952041

RESUMO

The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.


Assuntos
Impressão Genômica , Macropodidae , Proteínas , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Metilação de DNA , Eutérios/genética , Eutérios/metabolismo , Macropodidae/genética , Macropodidae/metabolismo , Placenta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sêmen/metabolismo
4.
Zoo Biol ; 43(1): 92-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37905691

RESUMO

The short-beaked echidna is sexually monomorphic such that gender identification without veterinary intervention is challenging. The aim of this study was to evaluate and compare the most optimal noninvasive genetic source by extracting echidna genomic DNA (gDNA) from fecal scats, plucked hair, and quills to perform genetic sex testing using a range of molecular markers. Sex determination of 14 captive short-beaked echidnas was determined by amplifying isolated DNA from noninvasive samples, targeting two Y chromosome (male-specific) genes (mediator complex subunit 26 Y-gametologue [CRSPY] and anti-Müllerian hormone Y-gametologue [AMHY]), in addition to four confirmed sex-specific RADseq markers. Results of noninvasive samples were compared with blood samples and clinical records. Receiver operating characteristic curves were used to assess accuracy of sex determination of markers for each sample type. The gender of the echidnas was successfully identified on 75% of occasions using fecal samples, 90.6% occasions using hair, and 84.6% occasions with quills. Overall, the male-specific RADseq markers accurately identified the sex of echidnas with all sample types for 90% of animals; compared with 81.5% using CRSPY, and 82.0% using AMHY to identify sex. Collection of hair, quills, and feces provides a useful alternative to invasively collected samples, however, the accuracy of results depends on sample type and genetic marker selected. We found gender determination in the short-beaked echidna was most accurate using four male-specific RADseq markers on gDNA isolated from blood and hair. The noninvasive genetic sexing techniques documented here will inform and facilitate husbandry and genetic management of captive echidna populations.


Assuntos
Tachyglossidae , Feminino , Animais , Masculino , Tachyglossidae/genética , Animais de Zoológico , DNA , Fezes , Biomarcadores
5.
Reproduction ; 165(5): 507-520, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36866926

RESUMO

In brief: Apart from mice, meiosis initiation factors and their transcriptional regulation mechanisms are largely unknown in mammals. This study suggests that STRA8 and MEIOSIN are both meiosis initiation factors in mammals, but their transcription is epigenetically regulated differently from each other. Abstract: In the mouse, the timing of meiosis onset differs between sexes due to the sex-specific regulation of the meiosis initiation factors, STRA8 and MEIOSIN. Before the initiation of meiotic prophase I, the Stra8 promoter loses suppressive histone-3-lysine-27 trimethylation (H3K27me3) in both sexes, suggesting that H3K27me3-associated chromatin remodelling may be responsible for activating STRA8 and its co-factor MEIOSIN. Here we examined MEIOSIN and STRA8 expression in a eutherian (the mouse), two marsupials (the grey short-tailed opossum and the tammar wallaby) and two monotremes (the platypus and the short-beaked echidna) to ask whether this pathway is conserved between all mammals. The conserved expression of both genes in all three mammalian groups and of MEIOSIN and STRA8 protein in therian mammals suggests that they are the meiosis initiation factors in all mammals. Analyses of published DNase-seq and chromatin-immunoprecipitation sequencing (ChIP-seq) data sets confirmed that H3K27me3-associated chromatin remodelling occurred at the STRA8, but not the MEIOSIN, promoter in therian mammals. Furthermore, culturing tammar ovaries with an inhibitor of H3K27me3 demethylation before meiotic prophase I affected STRA8 but not MEIOSIN transcriptional levels. Our data suggest that H3K27me3-associated chromatin remodelling is an ancestral mechanism that allows STRA8 expression in mammalian pre-meiotic germ cells.


Assuntos
Histonas , Meiose , Animais , Feminino , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Montagem e Desmontagem da Cromatina , Células Germinativas/metabolismo , Histonas/metabolismo , Mamíferos/genética , Tretinoína/metabolismo
6.
Gen Comp Endocrinol ; 327: 114092, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792163

RESUMO

The monotreme adrenocortical response to stress may not rely as heavily on the hypothalamic-pituitaryadrenal (HPA) axis compared to other mammals. This study aimed to validate a technique in which glucocorticoid metabolites could be quantified non-invasively in short-beaked echidna faeces by examining the secretion of glucocorticoids (GC) using an adrenocorticotrophic hormone (ACTH) challenge on sexually mature captive echidnas. Echidnas were housed individually for 15 days, with the ACTH challenge occurring on day five. Blood samples were collected on day five during the challenge and faecal samples were collected each morning for the 15 days. Both sample types were analysed for glucocorticoids (GC) or its metabolites. Plasma corticosterone concentrations increased significantly after 30 min and 60 min relative to time 0, whilst plasma cortisol concentrations increased significantly after 60 min. The ACTH challenge also resulted in an increase in glucocorticoid metabolite concentration in faecal samples from four of the six echidnas detected one to two days post ACTH injection, thereby validating a non-invasive method to assess adrenal response in the echidna. These results confirm that echidnas respond to a synthetic ACTH challenge in a similar manner to that of eutherian species indicating that echidnas appear to use the HPA axis in their stress response.


Assuntos
Monotremados , Tachyglossidae , Hormônio Adrenocorticotrópico/metabolismo , Animais , Fezes , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Monotremados/fisiologia , Sistema Hipófise-Suprarrenal/metabolismo
7.
Reproduction ; 162(4): 267-275, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34320464

RESUMO

This study describes the progesterone profile during pregnancy in sexually mature female captive short-beaked echidnas (Tachyglossus aculeatus aculeatus). Echidnas were monitored daily by video surveillance to confirm key reproductive behaviour. Plasma samples were collected and pouch morphology was assessed three times a week. The pouch of the female echidna only develops during gestation and it was possible to create a four-stage grading system using the most distinguishable characteristics of pouch development. Maximum pouch development was associated with declining progesterone concentrations, with the pouch closing in a drawstring-like manner at oviposition. Control of pouch development in pregnant echidnas is not yet clear but later pouch development is associated with a decrease in progesterone and pouch closure and may be under mechanical influences of the egg or young in the pouch. The length of pregnancy was 16.7 ± 0.2 days with a 15.1 ± 1.0 days luteal phase followed by an incubation period in the pouch. Eggs could be detected in utero at least 4 days before oviposition. Plasma progesterone peaked at 10.5 ± 0.9 ng/mL within 12 days of mating but then declined to basal levels within 1 day of oviposition and remained basal throughout egg incubation, confirming that progesterone is elevated throughout pregnancy and that gestation does not extend beyond the luteal phase. After the loss of an egg or pouch young, most females entered a second oestrous cycle and ovulated, suggesting echidnas are seasonally polyoestrous. The duration of the luteal phase in the echidna corresponds with that observed in other mammals.


Assuntos
Tachyglossidae , Animais , Feminino , Fase Luteal , Gravidez , Progesterona , Reprodução
8.
Development ; 144(18): 3199-3210, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28928280

RESUMO

Embryonic diapause - a period of embryonic suspension at the blastocyst stage - is a fascinating phenomenon that occurs in over 130 species of mammals, ranging from bears and badgers to mice and marsupials. It might even occur in humans. During diapause, there is minimal cell division and greatly reduced metabolism, and development is put on hold. Yet there are no ill effects for the pregnancy when it eventually continues. Multiple factors can induce diapause, including seasonal supplies of food, temperature, photoperiod and lactation. The successful reactivation and continuation of pregnancy then requires a viable embryo, a receptive uterus and effective molecular communication between the two. But how do the blastocysts survive and remain viable during this period of time, which can be up to a year in some cases? And what are the signals that bring it out of suspended animation? Here, we provide an overview of the process of diapause and address these questions, focussing on recent molecular data.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário , Animais , Feminino , Humanos , Lactação , Mamíferos/embriologia , Estações do Ano , Útero/fisiologia
9.
Reprod Fertil Dev ; 31(7): 1228-1239, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30418870

RESUMO

Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal-embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.


Assuntos
Implantação do Embrião/fisiologia , Poliaminas/metabolismo , Reprodução/fisiologia , Útero/metabolismo , Animais , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos
10.
Zygote ; 27(3): 173-179, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31171046

RESUMO

SummaryRecovery from decreased cell volume is accomplished by a regulated increase of intracellular osmolarity. The acute response is activation of inorganic ion transport into the cell, the main effector of which is the Na+/H+ exchanger NHE1. NHE1 is rapidly activated by a cell volume decrease in early embryos, but how this occurs is incompletely understood. Elucidating cell volume-regulatory mechanisms in early embryos is important, as it has been shown that their dysregulation results in preimplantation developmental arrest. The kinase JAK2 has a role in volume-mediated NHE1 activation in at least some cells, including 2-cell stage mouse embryos. However, while 2-cell embryos show partial inhibition of NHE1 when JAK2 activity is blocked, NHE1 activation in 1-cell embryos is JAK2-independent, implying a requirement for additional signalling mechanisms. As focal adhesion kinase (FAK aka PTK2) becomes phosphorylated and activated in some cell types in response to decreased cell volume, we sought to determine whether it was involved in NHE1 activation in the early mouse embryo. FAK activity requires initial autophosphorylation of a tyrosine residue, Y397. However, FAK Y397 phosphorylation levels were not increased in either 1- or 2-cell embryos after cell volume was decreased. Furthermore, the selective FAK inhibitor PF-562271 did not affect NHE1 activation at concentrations that essentially eliminated Y397 phosphorylation. Thus, autophosphorylation of FAK Y397 does not appear to be required for NHE1 activation induced by a decrease in cell volume in early mouse embryos.


Assuntos
Blastocisto/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Hidrogênio/metabolismo , Indóis/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sódio/metabolismo , Sulfonamidas/farmacologia , Tirosina/metabolismo
11.
Biol Reprod ; 99(1): 242-251, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741586

RESUMO

The first incidence of embryonic diapause in mammals was observed in the roe deer, Capreolus capreolus, in 1854 and confirmed in the early 1900s. Since then scientists have been fascinated by this phenomenon that allows a growing embryo to become arrested for up to 11 months and then reactivate and continue development with no ill effects. The study of diapause has required unraveling basic reproductive processes we now take for granted and has spanned some of the major checkpoints of reproductive biology from the identification of the sex hormones to the hypothalamic-pituitary axis to microRNA and exosomes. This review will describe the history of diapause from its origins to the current day, including its discovery and efforts to elucidate its mechanisms. It will also attempt to highlight the people involved who were instrumental in progressing this field over the last 160 years. The most recent confirmation of mammalian diapause was in the panda in 2009 and there are still multiple mammals where it has been predicted but not yet confirmed. Furthermore, there are many questions still unanswered which ensure that embryonic diapause will continue to be a topic of research for many years to come. Note that there have recently been several extensive reviews covering the recent advances in embryonic diapause, so they will be mentioned only briefly here. For further information refer to Renfree and Shaw 2014; Fenelon et al 2014; Renfree and Fenelon 2017, and references therein.


Assuntos
Diapausa/fisiologia , Implantação Tardia do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Útero/fisiologia , Animais , Feminino , História do Século XIX , História do Século XX , História do Século XXI , Mamíferos , Pesquisa/história
12.
Biol Reprod ; 97(1): 119-132, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637295

RESUMO

Embryonic diapause is a common reproductive strategy amongst mammals, requiring an intimate cross-talk between the endometrium and the blastocyst. To date, the precise molecular signals responsible are unknown in the mouse or any other mammal. Previous studies in the mink implicate polyamines as major regulators of the control of diapause. In the mouse, inhibiting the rate-limiting enzyme of polyamine synthesis, ornithine decarboxylase (ODC1) during early pregnancy largely prevents implantation, but the fate of the nonimplanted embryos is unknown. To determine whether polyamines control mouse embryonic diapause, we treated pregnant mice with an ODC1 inhibitor from d3.5 to d6.5 postcoitum. At d7.5, 72% of females had no signs of implantation whilst the remaining females exhibited disrupted placental formation and degenerate embryos. In the females with no implantation, we obtained viable blastocysts that had attenuated cell proliferation, indicating a state of diapause. When cultured in vitro, these exhibited trophoblast outgrowth, indicative of reactivation of embryogenesis. In contrast, direct culture of d3.5 blastocysts with an ODC1 inhibitor failed to cause entry into diapause. Examination of the polyamine pathway enzymes and a number of implantation factors indicated inhibition of ODC1 resulted in a uterine phenotype that resembled diapause, with some compensatory increases in crucial genes. Thus, we conclude that an absence or paucity of polyamines induces the uterine quiescence that causes entry of the blastocyst into embryonic diapause.


Assuntos
Blastocisto/metabolismo , Diapausa/fisiologia , Eflornitina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Poliaminas/metabolismo , Animais , Implantação do Embrião , Desenvolvimento Embrionário/fisiologia , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , Útero/metabolismo
13.
Biol Reprod ; 96(4): 877-894, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379301

RESUMO

Embryonic diapause is a period of developmental arrest which requires coordination of a molecular cross-talk between the endometrium and blastocyst to ensure a successful reactivation, but the exact mechanisms are undefined. The objectives of this study were to screen the tammar blastocyst for potential diapause control factors and to investigate the potential for members of the epidermal growth factor (EGF) family to coordinate reactivation. A select number of factors were also examined in the mink to determine whether their expression patterns were conserved across diapause species. The full-length sequences of the tammar genes of interest were first cloned to establish their level of sequence conservation with other mammals. The uterine expression of EGF family members EGF and heparin-binding EGF (HBEGF) and their receptors (EGFR and erb-b2 receptor tyrosine kinase 4 (ERBB4)) was determined by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. Both HBEGF and EGF were significantly upregulated at reactivation compared to diapause. In the blastocyst, the expression of the potential diapause factors Forkhead box class O family members (FOXO1, FOXO3, and FOXO4), tumor protein 53 (TP53), cyclin-dependent kinase inhibitor 1A (CDKN1A), and the EGF family were examined by RT-PCR and immunofluorescence. Nuclear (and hence active) FOXO expression was confirmed for the first time in a mammalian diapause blastocyst in both the tammar and the mink-CDKN1A was also expressed, but TP53 is not involved and EGFR was not detected in the blastocyst. These results indicate that the EGF family, FOXOs, and CDKN1A are promising candidates for the molecular control of embryonic diapause in mammals.


Assuntos
Blastocisto/fisiologia , Diapausa/fisiologia , Desenvolvimento Embrionário/fisiologia , Macropodidae/embriologia , Vison/embriologia , Animais , Clonagem Molecular , Endométrio/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transcriptoma
14.
Biol Reprod ; 95(1): 6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27226312

RESUMO

Embryonic diapause is an evolutionary strategy to ensure that offspring are born when maternal and environmental conditions are optimal for survival. In many species of carnivores, obligate embryonic diapause occurs in every gestation. Reciprocal embryo transplant studies indicate that embryo arrest during diapause is conferred by uterine conditions and is due to a lack of specific factors necessary for continued development. In previous studies, global gene expression analysis revealed reduced uterine expression during diapause of a cluster of genes in the mink that regulate the abundance of polyamines, including ornithine decarboxylase 1 (ODC1). In addition, in vivo inhibition of the conversion of ornithine to the polyamine, putrescine, induced a reversible arrest in mink embryonic development and an arrest in trophoblast cell proliferation in vitro. Previous studies have implicated prolactin as the principal endocrine signal to terminate diapause. In this study, uterine expression of both the progesterone and estrogen receptors remained low at reactivation whilst the prolactin receptor was expressed at all times. Treatment of mink uterine epithelial cells with varying doses of prolactin indicated that this hormone induces ODC1 expression in the uterus via pSTAT1 and mTOR, thereby regulating uterine polyamine levels. In addition, we performed global gene expression analysis on mink embryos to further explore dynamic changes during diapause and found 94 genes upregulated at reactivation from diapause. Three polyamine-related genes, including ODC1, were also upregulated at reactivation from diapause. To establish whether polyamines mitigate escape from embryonic diapause, we collected mink embryos in diapause and incubated them in vitro with putrescine. Increase in embryo volume, the first indication of emergence from diapause, was observed within the first 5 days of culture in all viable embryos treated with putrescine, and the duration of embryo survival was increased threefold. Concomitant increases were also observed in both the total number of cells and the proportion of dividing cells in putrescine-treated embryos whilst control embryos remained in the diapause state. In further studies, inhibition of polyamine synthesis abrogated proliferation in cells derived from the inner cell mass of the mink embryo, while putrescine induced dose-dependent increases in cell division. We conclude that supplementation of embryos in diapause with putrescine results in their escape from developmental dormancy. These results provide strong evidence that obligate diapause in vivo is caused by the paucity of polyamines necessary for activation of the embryo after prolactin-induced termination of diapause.


Assuntos
Desenvolvimento Embrionário/fisiologia , Prolactina/farmacologia , Receptores da Prolactina/metabolismo , Útero/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Vison , Fosforilação , Gravidez , Putrescina/farmacologia , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Fator de Transcrição STAT1/metabolismo , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Útero/citologia , Útero/efeitos dos fármacos
15.
Reproduction ; 147(1): 21-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123130

RESUMO

The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf release in vitro increases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.


Assuntos
Endométrio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Macropodidae/embriologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Corpo Lúteo/metabolismo , Feminino , Macropodidae/metabolismo , Gravidez , Progesterona/metabolismo , Útero/metabolismo
16.
Curr Opin Genet Dev ; 86: 102192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604005

RESUMO

Embryonic diapause in mammals is a period of developmental pause of the embryo at the blastocyst stage. During diapause, the blastocyst has minimal cell proliferation, metabolic activity and gene expression. At reactivation, blastocyst development resumes, characterised by increases in cell number, biosynthesis and metabolism. Until recently, it has been unknown how diapause is maintained without any loss of blastocyst viability. This review focuses on recent progress in the identification of molecular pathways occurring in the blastocyst that can both cause and maintain the diapause state. A switch to lipid metabolism now appears essential to maintaining the diapause state and is induced by forkhead box protein O1. The forkhead box protein O transcription family is important for diapause in insects, nematodes and fish, but this is the first time a conclusive role has been established in mammals. Multiple epigenetic modifications are also essential to inducing and maintaining the diapause state, including both DNA and RNA methylation mechanisms. Finally, it now appears that diapause embryos, dormant stem cells and chemotherapeutic-resistant cancer cells may all share a universal system of quiescence.


Assuntos
Blastocisto , Diapausa , Desenvolvimento Embrionário , Animais , Blastocisto/metabolismo , Blastocisto/citologia , Diapausa/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Metabolismo dos Lipídeos/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
17.
J Comp Physiol B ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748188

RESUMO

It is possible that the reproductive strategy of the short-beaked echidna is related to seasonal changes in fat deposition and energy availability, regulated by seasonal changes in endocrine function. We predicted that circulating leptin levels would be directly proportional to adiposity during most of the year, but that a change in this relationship would occur during the pre-breeding season to allow increased fat deposition. To test this hypothesis, we made use of a captive colony of echidnas to describe and quantify changes in fat distribution and the adipostatic hormone leptin. First we assessed seasonal changes in circulating leptin levels, body mass and adiposity for three male and three female adult echidnas maintained on a standard diet. Second, we explored the relationship between circulating leptin levels and increased caloric intake for an additional five adult female echidnas that were provided with supplemented nutrition. Third we visualised fat distribution in male and female adult echidnas using magnetic resonance imaging (MRI) before and after the breeding season, to determine where fat is deposited in this species. For echidnas maintained on the standard diet, there were no seasonal changes in body mass, body fat or plasma leptin levels. However, female echidnas provided with supplemented nutrition had significantly elevated plasma leptin levels during the breeding season, compared to the pre-and post- breeding periods. MRI showed substantial subcutaneous fat depots extending dorso-laterally from the base of the skull to the base of the tail, in both sexes. Pre-breeding season, both sexes had considerable fat deposition in the pelvic/rump region, whilst the female echidna accumulated most fat in the abdominal region. This study shows that male and female echidnas accumulate body fat in the pelvic/rump and the abdominal regions, respectively and that circulating leptin may promote fattening in female echidnas during the breeding season by means of leptin resistance. However, further research is required to evaluate the precise relationship between seasonal changes in leptin and adiposity.

18.
Microbiologyopen ; 12(6): e1392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129978

RESUMO

Indigenous gut microbial communities (microbiota) play critical roles in health and may be especially important for the mother and fetus during pregnancy. Monotremes, such as the short-beaked echidna, have evolved to lay and incubate an egg, which hatches in their pouch where the young feeds. Since both feces and eggs pass through the cloaca, the fecal microbiota of female echidnas provides an opportunity for vertical transmission of microbes to their offspring. Here, we characterize the gut/fecal microbiome of female short-beaked echidnas and gain a better understanding of the changes that may occur in their microbiome as they go through pregnancy. Fecal samples from four female and five male echidnas were obtained from the Currumbin Wildlife Sanctuary in Queensland and sequenced to evaluate bacterial community structure. We identified 25 core bacteria, most of which were present in male and female samples. Genera such as Fusobacterium, Bacteroides, Escherichia-Shigella, and Lactobacillus were consistently abundant, regardless of sex or gestation stage, accounting for 58.00% and 56.14% of reads in male and female samples, respectively. The echidna microbiome remained stable across the different gestation stages, though there was a significant difference in microbiota composition between male and female echidnas. This study is the first to describe the microbiome composition of short-beaked echidnas across reproductive phases and allows the opportunity for this novel information to be used as a metric of health to aid in the detection of diseases triggered by microbiota dysbiosis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Tachyglossidae , Animais , Gravidez , Feminino , Masculino , Animais Selvagens , Fezes
19.
Genome Biol Evol ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35749276

RESUMO

Genomic imprinting is found in marsupial and eutherian mammals, but not in monotremes. While the primary regulator of genomic imprinting in eutherians is differential DNA methylation between parental alleles, conserved imprinted genes in marsupials tend to lack DNA methylation at their promoters. DNA methylation at eutherian imprinted genes is mainly catalyzed by a DNA methyltransferase (DNMT) enzyme, DNMT3A. There are two isoforms of eutherian DNMT3A: DNMT3A and DNMT3A2. DNMT3A2 is the primary isoform for establishing DNA methylation at eutherian imprinted genes and is essential for eutherian genomic imprinting. In this study, we investigated whether DNMT3A2 is also present in the two other mammalian lineages, marsupials and monotremes. We identified DNMT3A2 in both marsupials and monotremes, although imprinting has not been identified in monotremes. By analyzing genomic sequences and transcriptome data across vertebrates, we concluded that the evolution of DNMT3A2 occurred in the common ancestor of mammals. In addition, DNMT3A/3A2 gene and protein expression during gametogenesis showed distinct sexual dimorphisms in a marsupial, the tammar wallaby, and this pattern coincided with the sex-specific DNA methylation reprogramming in this species as it does in mice. Our results show that DNMT3A2 is present in all mammalian groups and suggests that the basic DNMT3A/3A2-based DNA methylation mechanism is conserved at least in therian mammals.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Evolução Molecular , Monotremados , Animais , Metilação de DNA/genética , DNA Metiltransferase 3A/genética , Impressão Genômica/genética , Macropodidae/genética , Mamíferos/genética , Marsupiais/genética , Camundongos , Monotremados/genética
20.
BMC Genomics ; 12: 420, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854594

RESUMO

BACKGROUND: The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby. RESULTS: We show that both the tammar thoracic and the cervical thymuses displayed gene expression profiles consistent with roles in T-cell development. Both thymuses expressed genes that mediate distinct phases of T-cells differentiation, including the initial commitment of blood stem cells to the T-lineage, the generation of T-cell receptor diversity and development of thymic epithelial cells. Crucial immune genes, such as chemokines were also present. Comparable patterns of expression of non-coding RNAs were seen. 67 genes differentially expressed between the two thymuses were detected, and the possible significance of these results are discussed. CONCLUSION: This is the first study comparing the transcriptomes of two thymuses from a single individual. Our finding supports that both thymuses are functionally equivalent and drive T-cell development. These results are an important first step in the understanding of the genetic processes that govern marsupial immunity, and also allow us to begin to trace the evolution of the mammalian immune system.


Assuntos
Perfilação da Expressão Gênica , Macropodidae/genética , Macropodidae/fisiologia , Timo/metabolismo , Animais , Antígenos/genética , Especificidade de Órgãos , RNA não Traduzido/genética , Tórax , Timo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA