Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(3): 1267-1273, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014804

RESUMO

An ultrathin surface layer with extraordinary molecular mobility has been discovered and intensively investigated on thin-film polymer materials for decades. However, because of the lack of suitable characterization techniques, it remains largely unexplored whether such a surface mobile layer also exists on individual polymeric nanospheres. Here, we propose a thermal-optical imaging technique to determine the glass transition (Tg) and rubber-fluid transition (Tf) temperatures of single isolated polystyrene nanospheres (PSNS) in a high-throughput and nonintrusive manner for the first time. Two distinct steps, corresponding to the glass transition and rubber-fluid transition, respectively, were clearly observed in the optical trace of single PSNS during temperature ramping. Because the transition temperature and size of the same individuals were both determined, single nanoparticle measurements revealed the reduced apparent Tf and increased Tg of single PSNS on the gold substrate with a decreasing radius from 130 to 70 nm. Further experiments revealed that the substrate effect played an important role in the increased Tg. More importantly, a gradual decrease in the optical signal was detected prior to the glass transition, which was consistent with a surface layer with enhanced molecular mobility. Quantitative analysis further revealed the thickness of this layer to be ∼8 nm. This work not only uncovered the existence and thickness of a surface mobile layer in single isolated nanospheres but also demonstrated a general bottom-up strategy to investigate the structure-property relationship of polymeric nanomaterials by correlating the thermal property (Tg and Tf) and structural features (size) at single nanoparticle level.

2.
Polymers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458271

RESUMO

Understanding the structural evolution process after the yielding of networks in polymer nanocomposites can provide significant insights into the design and fabrication of high-performance nanocomposites. In this work, using hydroxyl-terminated 1,4-polybutadiene (HTPB)/organo-clay nanocomposite gel as a model, we explored the yielding and recovery process of a polymer network. Linear rheology results revealed the formation of a nanocomposite gel with a house-of-cards structure due to the fully exfoliated 6 to 8 wt% organo-clays. Within this range, nonlinear rheologic experiments were introduced to yield the gel network, and the corresponding recovery processes were monitored. It was found that the main driving force of network reconstruction was the polymer-clay interaction, and the rotation of clay sheets played an important role in arousing stress overshoots. By proton double-quantum (1H DQ) NMR spectroscopy, residual dipolar coupling and its distribution contributed by HTPB segments anchored on clay sheets were extracted to unveil the physical network information. During the yielding process of a house-of-cards network, e.g., 8 wt% organo-clay, nearly one-fourth of physical cross-linking was broken. Based on the rheology and 1H DQ NMR results, a tentative model was proposed to illustrate the yielding and recovery of the network in HTPB/organo-clay nanocomposite gel.

3.
Water Res ; 154: 180-188, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797126

RESUMO

Anammox granular sludge biotechnology has been successfully applied in the environmental engineering for nitrogen removal from wastewater. However, the startup and control of anammox process was difficult and lacks an easy-recognized indicator. In this work, the texture of anammox sludge bed in a long-term (>15 months) stable-operated and high-rate anammox reactor was investigated for the first time. The results showed that the anammox sludge bed took on the unique texture which was closely related to the biological loading rates of sludge bed at different heights of the reactor. The texture was ascribed to the pattern created by granule gradation (granules size distribution) and granule number density (spaces between granules). The sludge bed texture displayed the distinctive vision and could be characterized by the reflected light of sludge bed. The lightness indicator was found to have an excellent linear relationship with the height of anammox sludge bed. The texture of anammox sludge bed was revealed to originate from the periodic cycle of gas-driven segregation and density-based aggregation of granules. The results hint at a convenient and efficient strategy for operators to assess and control the working state of anammox system.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Nitrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA