RESUMO
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Assuntos
Antibacterianos , Compostagem , Antibacterianos/farmacologia , Genes Bacterianos/genética , Fermentação , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Esterco/microbiologiaRESUMO
Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.
Assuntos
Planárias , Animais , Antioxidantes/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Dodecilsulfato de Sódio/toxicidade , Superóxido Dismutase/metabolismoRESUMO
Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.
Assuntos
Antibacterianos , Compostagem , Antibacterianos/farmacologia , Gentamicinas , Zea mays/genética , Genes Bacterianos , Fermentação , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Bactérias/genéticaRESUMO
Objective: To investigate the genotoxicity of metformin on planarian with different concentrations and exposure times. Methods: The planarians were treated, respectively, with 10 mmol/L and 50 mmol/L metformin for 1, 3, and 5 days, and then, the comet assay and random amplified polymorphic DNA (RAPD) analysis were performed. 13 random primers were used for PCR amplification with the genomic DNAs as templates. Planarians cultured in clear water were used as the control. Genomic template stability (GTS) was calculated by comparing and analyzing the RAPD patterns of the control group and the treatment groups. Results: In the comet assay, DNA damage of planarians treated with 10 mmol/L metformin for 1, 3, and 5 days was 10.2%, 25.4%, and 36.8%, respectively, and that of planarians treated with 50 mmol/L metformin was 40.6%, 62.8%, and 65.4%, respectively. GTS values of planarians exposed to 10 mmol/L metformin for 1, 3, and 5 days were 64.1%, 62.8%, and 52.6%, respectively, and those of planarians exposed to 50 mmol/L metformin for 1, 3, and 5 days were 52.6%, 51.3%, and 50%, respectively. DNA damage increased and GTS values decreased with the increasing metformin exposure concentration and exposure time. Conclusion: Metformin has certain genotoxicity on planarian in a dose- and time-related manner. The comet assay and RAPD analysis are highly sensitive methods for detecting genotoxicity with drugs.
Assuntos
Metformina , Planárias , Animais , Ensaio Cometa , Dano ao DNA , Água Doce , Instabilidade Genômica , Técnica de Amplificação ao Acaso de DNA PolimórficoRESUMO
Dendritic cells (DCs) play a pivotal role in the pathogenesis of human immunodeficiency virus-1 (HIV-1). Reduced numbers of blood DCs have been observed in individuals with chronic HIV-1 infection. In the present study, we analyzed the expression levels of monocytes, myeloid dendritic cell (mDC) precursors, mDCs, and plasmacytoid dendritic cells (pDCs), in HIV-1-infected patients in China who were infected via different routes of transmission, including heterosexual and homosexual sexual contact, and blood transmission through importation of blood or blood products, to further elucidate their role in HIV. Compared with HIV-negative individuals (n = 40), relative levels of CD11c+CD14â»mDCs, CD11c++CD123(low) mDCs, and CD11câ»CD123+ pDCs in total peripheral blood mononuclear cells (PBMCs) were significantly lower in all HIV patients (n = 93), and in those with blood transmission (n = 26) and heterosexual transmission (n = 43), while relative levels of CD11c+CD14â»mDCs were significantly lower in HIV patients infected via homosexual transmission (n = 24). The results of correlation analysis demonstrated a significant negative correlation between CD4+ T-cell counts and the relative levels of CD11c++CD123(low) mDCs in HIV-I patients infected via blood transmission. There was no significant correlation between CD4+ T-cell counts and the expression level of other DC subpopulations in PBMCs from HIV patients. The results of this study suggest that HIV-1 patients with different routes of transmission exhibit altered expression levels of blood DC subpopulations, which contributes to dysregulated immune responses and pathogenesis of HIV-1.