Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Angew Chem Int Ed Engl ; : e202417902, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383300

RESUMO

Single- and few-layer graphene-based thermal interface materials (TIMs) with extraordinary high-temperature resistance and ultra-high thermal conductivity are very essential to develop the next-generation integrated circuits. However, the function of the as-prepared graphene-based TIMs would undergo severe degradation when being transferred to chips, as the interface between the TIMs and chips possesses a very small interfacial thermal conductance. Here, a "2.5D" all-carbon interface containing rich covalent bonding, namely a sp2/sp3 hybrid interfaces is designed and realized by a plasma-assisted chemical vapor deposition with a function of ultra-rapid quenching. The interfacial thermal conductance of the 2.5D interface is excitingly very high, up to 110-117 MWm-2K-1 at graphene thickness of 12-25 nm, which is even more than 30% higher than various metal/diamond contacts, and orders of magnitude higher than the existing all-carbon contacts. Atomic-level simulation confirm the key role of the efficient heat conduction via covalent C-C bonds, and reveal that the covalent-based heat transport could contribute 85% to the total interfacial conduction at a hybridization degree of 22 at%. This study provides an efficient strategy to design and construct 2.5D all-carbon interfaces, which can be used to develop high performance all-carbon devices and circuits.

2.
Nanotechnology ; 35(9)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995375

RESUMO

Polyethylene glycol (PEG) is widely used as a phase change material (PCM) in thermal energy storage systems due to its high latent heat and chemical stability. However, practical application has been hindered by its low thermal conductivity and leakage issues. Therefore, developing shape-stable high thermal conductivity PCM is of great importance. In this study, new shape-stable composite PCM with high thermal conductivity and leak-prevention capabilities were designed. The porous carbon skeleton of diamond foam (DF) and dual-3D carbon nanotube-diamond foam (CDF) were prepared using the microwave plasma chemical vapor deposition method. The composite materials (DF/PEG and CDF/PEG) were produced by vacuum impregnation with PEG and skeletons. The results showed that CDF/PEG had the highest thermal conductivity, measuring 2.30 W·m-1·K-1, which is 707% higher than that of pure PEG. The employing of 3D networks of CNTs, which can improve the phonon mean free path in DF/PEG (1.79 W·m-1·K-1) while reducing phonon dispersion.The phonon vibration of dual-3D CDF plays an important role in heat transfer. PEG was physically absorbed and well-distributed in CDF, alleviating leakage of liquid PEG. The weight loss of CDF/PEG was only 25% at 70 °C for 120 s. Using CDF is an attractive and efficient strategy to increase the heat transfer of PEG and improve heat storage efficiency, alleviate the problem of poor shape-stability.

3.
Small ; 18(43): e2106904, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35187802

RESUMO

Development of efficient non-noble metal catalysts for water splitting is of great significance but challenging due to the sluggish kinetics of the hydrogen evolution reaction (HER) in alkaline medium. Herein, a bimetallic multi-level layered catalytic electrode composed of Ni3 S2 nanosheets with secondary Co-NiOOH layer of 3D porous and free-standing cathode in alkaline medium is reported. This integrated synergistic catalytic electrode exhibits excellent HER electrocatalytic performance. The resultant Ni0.67 Co0.33 /Ni3 S2 @NF electrode displays the highest HER activity with only overpotentials of 87 and 203 mV to afford current densities of 10 and 100 mA·cm-2 , respectively, and its Tafel slope is 80 mV·dec-1 . The chronopotentiometry operated at high current density of 50 mA·cm-2 shows negligible deterioration, indicating better stability of Ni0.67 Co0.33 /Ni3 S2 @NF electrode than Pt/C (20 wt.%). Such a desirable catalytic performance is attributed to the modification of physical and electronic structure that exposes abundant active sites and improves the intrinsic catalytic activity toward HER, which is also confirmed by electrochemically active surface area and X-ray photoelectron spectroscopy analysis. This work provides a strong support for the rational design of high-performance bimetallic electrodes for industrial water splitting.

4.
Langmuir ; 38(2): 863-869, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34968065

RESUMO

Patterned surfaces combining hydrophobic and hydrophilic properties show great promise in moisture condensation; however, a comprehensive understanding of the multiscale interfacial behavior and the further controlling method is still lacking. In this paper, we studied the moisture condensation on a hybrid superhydrophobic-hydrophilic surface with hierarchical structures from micro- to nanoscale. For the first time, we demonstrated the effects of wettability difference and microstructure size on the final condensation efficiency. By optimizing the wettability difference, sub-millimeter pattern width, and microstructure size, maximum 90% enhancement of the condensation rate was achieved as compared with the superhydrophobic surface at a subcooling of 13 K. We also demonstrated the enhanced condensation mechanism by a detailed analysis of the condensation process. Our work proposed effective and systematical methods for controlling and optimizing moisture condensation on the patterned surfaces and shed light on application integration of such promising functional surfaces.

5.
Langmuir ; 37(46): 13729-13736, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34762805

RESUMO

The dewetting phenomenon of a liquid film in the presence of a surfactant exists in various natural, industrial, and biomedical processes but still remains mysterious in some specific scenarios. Here, we investigate the dewetting behavior of water films initiated by surfactant-laden droplet impact and show that the maximum dewetting diameter can even reach more than 50 times that of the droplet size. We identify the S-type variation of the dewetting area and demonstrate its correlation to the dynamic surface tension reduction. From a viewpoint of energy conversion, we attribute the dewetting to the released surface energy caused by the surfactant addition and establish a linear relation between the maximum dewetting and the surfactant concentration in the film, i.e., dmax2 ∝ cfilm, which agrees well with the experiments. These results may advance the physics of liquid film dewetting triggered by surfactant injection, which shall further guide practical applications.

6.
Sensors (Basel) ; 21(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34883974

RESUMO

A new freestanding sensor-based 3ω technique is presented here, which remarkably expands the application of traditional 3ω technology to anisotropic materials. The freestanding flexible sensor was fabricated using the mature flexible printed circuit production technique, which is non-destructive to the samples and applicable to porous surfaces. The thermal conductivities of potassium dihydrogen phosphate (KDP) crystal along the (100), (010) and (001) crystallographic planes were measured based on this new sensor at room temperature. We found that the freestanding flexible sensor has considerable application value for thermal properties' characterization for crystals with anisotropic thermophysical properties and other structures for which the traditional 3ω technique is not applicable.

7.
Int J Heat Mass Transf ; 163: 120550, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33071298

RESUMO

Thermophysical properties of human skin surface and subsurface can reflect the hydration state of the skin and the blood flow rate in the near surface microvessels, which reveals important physiological information related to dermatology and overall health status of human body. Although a few techniques have been developed to measure these signs, complicated devices are required and the subjects need to be completely fixed during the test period. Here, a flexible thermosensor-based 3ω technology was used to monitor thermal conductivity of human skins at different states. Through the analysis of these characteristics, the corresponding physiological state can be established, which can provide a new detection method for the evaluation or prediction of human health status.

8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(9): 1104-1108, 2020.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-33051425

RESUMO

OBJECTIVES: To study the effect of rotation errors on the γ pass rate of volume-modulated arc therapy (VMAT) plan in rectal cancer based on the ArcCheck phantom. METHODS: CT data from 20 rectal cancer patients underwent VMRT were selected randomly for this study. Targeting areas were selected, and clinical radiotherapy and validation plans were formulated. ArcCheck model was selected to validate the radiotherapy plans. The effect of the rotation errors on the dosimetric verification for VMAT in rectal cancer was simulated and analyzed with ArcCheck model software. RESULTS: When there was no rotation errors, the γ pass rate of VMRT plans was more than 95%. When the absolute rotation angle was less than or equal to 1°, the γ pass rate of VMAT plans was more than 90%, meeting the clinical requirements. When the absolute rotation angle was greater than 1°, the γ pass rate was less than 90%, which did not meet clinical requirements. CONCLUSIONS: The rotation errors affect the γ pass rate of VMAT plans. The larger the rotation angle, the lower the γ pass rate. It meets clinical requirements when the rotation error is less than or equal to 1°.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias Retais , Humanos , Radiometria , Planejamento da Radioterapia Assistida por Computador , Neoplasias Retais/radioterapia , Rotação
9.
Phys Chem Chem Phys ; 22(1): 337-343, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31815266

RESUMO

Three dimensional (3D) graphene-CNT hybrid structures (GCNTs) are promising materials for applications including capacitors and gas storage and separation devices, however until now their thermal conductance mechanism has scarcely been studied. These hybrid nanomaterials are particularly suitable as next-generation thermal interface materials due to the excellent thermal properties of carbon nanotubes and single atomic layer graphene. In this paper, the out-of-plane thermal conductivities of GCNTs, graphene nanomesh (GNM), and graphene sheets are investigated using molecular dynamics (MD) simulations which apply the Green-Kubo method. Distinct from GNMs and graphene sheets, the GCNTs exhibit a relatively high out-of-plane thermal conductivity, stemming from the CNTs' ability to accelerate the energy flow. However, the GCNT out-of-plane thermal conductivity is still far lower than that of pristine graphene due to extreme phonon localizations, which are concentrated on the graphene-CNT junction regions as evidenced by the participation ratio, phonon vibrational density of states, and overlap energy. This study provides microscopic insight into the GCNT heat transfer mechanism and offers design guidelines for application of GCNTs in thermal management devices.

10.
Macromol Rapid Commun ; : e1800283, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29975438

RESUMO

Polythiophene (PTh) with highly regular molecular structure is synthesized as nearly amorphous thin films by electrochemical methods in a BFEE/DTBP mixed medium (BFEE = boron fluoride ethyl ether; DTBP = 2,6-di-tert-butypyridine). The doping level and film morphology of PTh are modulated through adjusting the current density applied during the polymerization process. A combined analysis with solid-state NMR, FT-IR, and Raman spectra reveals the molecular structural regularity of the resulted PTh films, which leads to the highest electrical conductivity up to 700 S cm-1 for films obtained under an optimized current density of 1 mA cm-2 . By applying the self-heating 3ω-method, thermal conductivities are measured along the in-plane direction. A highly reduced Lorenz number of 6.49 × 10-9 W Ω K-2 and low lattice thermal conductivity of 0.21 W m-1 K-1 were extracted based on the analyses of the electrical and thermal conductivities according to the Wiedemann-Franz Law; the former is about one-third of the Sommerfeld value. Finally, the maximized ZT value can reach up to 0.10 under room temperature, which shows that the highly conducting polymers with less ordered structure is the practical direction for developing organic thermoelectric materials.

11.
Phys Chem Chem Phys ; 20(11): 7772-7780, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29503987

RESUMO

Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

12.
Phys Chem Chem Phys ; 19(25): 16312-16316, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621365

RESUMO

Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.

13.
Environ Sci Technol ; 50(17): 9380-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27518119

RESUMO

The adsorption and diffusion of the CO2-CH4 mixture in coal and the underlying mechanisms significantly affect the design and operation of any CO2-enhanced coal-bed methane recovery (CO2-ECBM) project. In this study, bituminous coal was fabricated based on the Wiser molecular model and its ultramicroporous parameters were evaluated; molecular simulations were established through Grand Canonical Monte Carlo (GCMC) and Molecular Dynamic (MD) methods to study the effects of temperature, pressure, and species bulk mole fraction on the adsorption isotherms, adsorption selectivity, three distinct diffusion coefficients, and diffusivity selectivity of the binary mixture in the coal ultramicropores. It turns out that the absolute adsorption amount of each species in the mixture decreases as temperature increases, but increases as its own bulk mole fraction increases. The self-, corrected, and transport diffusion coefficients of pure CO2 and pure CH4 all increase as temperature or/and their own bulk mole fractions increase. Compared to CH4, the adsorption and diffusion of CO2 are preferential in the coal ultramicropores. Adsorption selectivity and diffusivity selectivity were simultaneously employed to reveal that the optimal injection depth for CO2-ECBM is 800-1000 m at 308-323 K temperature and 8.0-10.0 MPa.


Assuntos
Dióxido de Carbono , Carvão Mineral , Adsorção , Difusão , Metano
14.
Phys Chem Chem Phys ; 17(41): 27520-6, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26426675

RESUMO

Heat conduction in carbon nanopeapods (CNPs), i.e. carbon nanotubes (CNTs) filled with fullerene C60 molecules, is investigated using molecular dynamics simulations. The enhancement mechanisms of CNP thermal conductivity, compared with bare CNTs, are discussed via the local heat flux onto a single atom, the relative contributions of different phonon oscillation frequencies to thermal conductivity and the phonon vibrational density of states. The result shows that filled C60 can increase the CNT thermal conductivity by up to 9.6 times in the temperature range of 100-500 K. The constructive phonon mode couplings between the tube and C60 in a frequency range of 0-20 THz, especially in x-, y-direction transverse acoustic modes and the radial breath mode, are primarily responsible for the increment of thermal conductivity. In addition, filled C60 molecules in CNPs enhance the mass transfer contribution to the total heat flux. This contribution accounts for 22-58% in CNPs, much higher than 12% in CNTs. With the temperature going up, the phonon scattering increases and the contribution from mass transfer to total heat flux decreases. Therefore, the CNP thermal conductivity decreases with rising temperature. This study sheds lights on nanoscale thermal/phonon engineering by utilization of CNTs and C60.

15.
Phys Chem Chem Phys ; 17(25): 16476-82, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051798

RESUMO

Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

16.
J Phys Chem A ; 119(45): 11226-32, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26485312

RESUMO

Focusing on carbon nanopeapods (CNPs), i.e., carbon nanotubes (CNTs) filled with fullerene C60 molecules, the thermal conductivity and its dependence on the filling ratio of C60 molecules have been investigated by equilibrium molecular dynamics simulations. It turns out that the CNP thermal conductivity increases first, reaches its maximum value at filling ratio of 50%, and then decreases with increasing filling ratio. The heat transfer mechanisms were analyzed by the motion of C60 molecules, the mass transfer contribution, the phonon vibrational density of states, and the relative contributions of tube and C60 molecules to the total heat flux. The mass transfer in CNPs is mainly attributed to the rotational and translational motion of C60 molecules in tubes. As the filling ratio is larger than 50%, the axially translational motion of C60 molecules gets more and more restricted with increasing filling ratio. For either the mass transfer contribution to heat transfer or the phonon coupling between the tube wall and C60, the peaking behavior occurs at a filling ratio of 50%, which confirms the corresponding maximum thermal conductivity of CNP. With the filling ratio increasing, the dominating contribution to heat transfer changes from tube-wall atoms to fullerene atoms. Their relative contributions almost keep stable when the filling ratio is larger than 50% until it reaches 100%, where the contribution from fullerene atoms suddenly drops because of strong confinement of translational motion of C60 molecules. This work may offer valuable routes for probing heat transport in CNT hybrid structures, and possible device applications.

17.
J Inflamm Res ; 17: 1527-1548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481477

RESUMO

Purpose: Immunological regimens are an important area of research for treating multiple myeloma (MM). Plasma cells play a crucial role in immunotherapy. Patients and Methods: In our study, we used both single-cell RNA sequencing (scRNA-seq) and bulk sequencing techniques to analyze MM patients. We analyzed each sample using gene set variation analysis (GSVA) based on immune-related gene sets. We also conducted further analyses to compare immune infiltration, clinical characteristics, and expression of immune checkpoint molecules between the H-S100A9 and L-S100A9 groups of MM patients. Results: We identified eight subpopulations of plasma cells, with S100A9 plasma cells being more abundant in patients with 1q21 gain and 1q21 diploid. CellChat analysis revealed that GAS and HGF signaling pathways were prominent in intercellular communication of S100A9 plasma cells. We identified 14 immune-related genes in the S100A9 plasma cell population, which allowed us to classify patients into the H-S100A9 group or the L-S100A9 group. The H-S100A9 group showed higher ESTIMATE, immune and stroma scores, lower tumor purity, and greater immune checkpoint expression. Patients with 1q21 gain and four or more copies had the lowest ESTIMATE score, immune score, stroma score, and highest tumor purity. Drug sensitivity analysis indicated that the H-S100A9 group had lower IC50 values and greater drug sensitivity compared to the L-S100A9 group. Quantitative reverse transcription (RT-q) PCR showed significantly elevated expression of RNASE6, LYZ, S100A8, S100A9, and S100A12 in MM patients compared to the healthy control group. Conclusion: Our study has identified a correlation between molecular subtypes of S100A9 plasma cells and the response to immunotherapy in MM patients. These findings improve our understanding of tumor immunology and provide guidance for developing effective immunotherapy strategies for this patient population.

18.
Adv Mater ; 36(31): e2402897, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801015

RESUMO

Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.

19.
Nat Commun ; 15(1): 2249, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480695

RESUMO

Icing of seawater droplets is capable of causing catastrophic damage to vessels, buildings, and human life, yet it also holds great potential for enhancing applications such as droplet-based freeze desalination and anti-icing of sea sprays. While large-scale sea ice growth has been investigated for decades, the icing features of small salty droplets remain poorly understood. Here, we demonstrate that salty droplet icing is governed by salt rejection-accompanied ice crystal growth, resulting in freezing dynamics different from pure water. Aided by the observation of brine films emerging on top of frozen salty droplets, we propose a universal definition of freezing duration to quantify the icing rate of droplets having varying salt concentrations. Furthermore, we show that the morphology of frozen salty droplets is governed by ice crystals that sprout from the bottom of the brine film. These crystals grow until they pierce the free interface, which we term ice sprouting. We reveal that ice sprouting is controlled by condensation at the brine film free interface, a mechanism validated through molecular dynamics simulations. Our findings shed light on the distinct physics that govern salty droplet icing, knowledge that is essential for the development of related technologies.

20.
ACS Appl Mater Interfaces ; 15(12): 16162-16176, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36924078

RESUMO

Interfacial structure optimization is important to enhance the thermal boundary conductance (TBC) as well as the overall performance of thermal conductive composites. In this work, the effect of interfacial roughness on the TBC between copper and diamond is investigated with molecular dynamics (MD) simulations and time-domain thermoreflectance (TDTR) experiments. It is found from MD simulations that the thermal transport efficiency across a rough interface is higher, and the TBC can be improved 5.5 times to 133 MW/m2·K compared with that of the flat interface. Also, the TBC is only dominated by the actual contact area at the interface for larger roughness cases; thus, we conclude that the phonon scattering probability increases with the increase of roughness and becomes stable gradually. Finally, the TBC of the copper/diamond interface with different roughness is characterized by TDTR experiments, and the results also confirm the trend of MD simulations. This study demonstrates the feasibility of the roughness modification for interfacial thermal management from both theoretical analysis and experimental measurements and provides a new idea for enhancing the thermal conductivity of composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA