RESUMO
Objective: This paper aimed to identify the factors related to Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection in neurosurgical patients, and to compare the therapeutic effects of tigecycline versus polymyxin B against CRKP infection, so as to provide a reliable reference for neurosurgery in future prevention and treatment of CRKP infection. Methods: One hundred and fifty cases of KPN treated in the neurosurgery department of our hospital from January 1, 2019 to December 31, 2021 were selected, 50 of which were found to be infected with CRKP and the other 100 were detected with carbapenem-sensitive Klebsiella pneumoniae (CSKP) by culture, analysis of factors associated with infection with CRKP. Subsequently, CRKP-infected patients were randomized into a group treated with Ti (group Ti) and a group treated with PB (group PB). The clinical efficacy, bacterial clearance, adverse reactions, and pre- and post-treatment hepatorenal function were comparatively analyzed. Results: Based on the Logistic regression analysis, tracheal intubation (or mechanical ventilation), combination of multiple underlying diseases, presence of impaired consciousness, and use of carbapenem antibiotics are independent risk factors for CRKP infection (P < .05). Ti and PB groups had no evident differences in clinical efficacy and bacterial clearance (P > .05); however, Ti group presented a worse hepatorenal function and a higher incidence of adverse reactions than PB group (P < .05). Conclusions: Tracheal intubation (or mechanical ventilation), multiple underlying diseases, consciousness disturbance, and use of carbapenem antibiotics are related factors affecting CRKP infection in neurosurgical patients. Both Ti and PB have excellent therapeutic efficacy, but the former has more obvious toxicity and side effects.
RESUMO
Fourier transform spectrometers (FTS) based on piston-scanning MEMS mirrors have clear advantages of small size and low cost. However, the performance of this type of MEMS FTS is seriously limited by the difficulty of precisely controlling the tilt angle of the MEMS mirror plate during its piston scanning. This paper reports an integrated tilt angle sensing method, which is achieved via a mixed signal integrated optoelectronic position sensor (iOE-PS) that is bonded directly on the back of an electrothermally-actuated MEMS mirror. The iOE-PS integrates a laser diode, a band-gap reference, a quadrant photo-detector (QPDs), and the QPDs' readout circuits all on a single chip. The iOE-PS has been fabricated in a 180 nm CMOS process. Experimental results show that the iOE-PS has a linear response when the MEMS mirror plate moves vertically between 1.31 mm to 1.50 mm over the iOE-PS chip; the tilt angle can be measured up to at least 5° with a resolution of 0.0067°. The iOE-PS can greatly reduce the size and complexity of MEMS mirrors-enabled systems with integrated closed-loop control capability.
RESUMO
Intracerebral hemorrhage (ICH) refers to the hemorrhage caused by the increase and rupture of vascular brittleness in non traumatic brain parenchyma, which has been demonstrated to be closely related to ferroptosis. This study aimed to examine the effects of methyltransferase like 3 (METTL3) on the ferroptosis in the ICH progression. The PC12 cells was stimulated by hemin to establish a ICH model. The cell viability was tested by CCK8 assay. The Fe2+, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were determined by the corresponding commercial kits. The cell death was analyzed by propidium Iodide (PI) staining. The lactylation levels were detected by western blot. M6A dot blot assay was performed to detected the total m6A levels and MeRIP assay was conducted to determine the m6A levels of transferrin receptor (TFRC). We found that the METTL3 and m6A levels were increased in the hemin treated PC12 cells. METTL3 knockdown increased the cell viability and decreased Fe2+, ROS and MDA levels in the hemin treated PC12 cells. The role of METTL3 knockdown in the hemin treated PC12 cells was reversed after TFRC overexpression. Mechanistically, the METTL3 lactylation was increased in the hemin treated PC12 cells, which further enhanced the protein stability and expression of METTL3. The up-regulated METTL3 increased the m6A levels and mRNA expressions of TFRC, which further induced the ferroptosis of the PC12 cells. In conclusion, the up-regulation of METTL3 lactylation enhanced the METTL3 protein stability and expression levels in hemin treated PC12 cells. METTL3 silenced suppressed the ferroptosis development through regulating the m6A levels of TFRC mRNA.
Assuntos
Ferroptose , Ratos , Animais , Metiltransferases/genética , Metiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hemina/farmacologia , Hemina/metabolismo , Hemorragia Cerebral , Receptores da Transferrina/genética , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Chronic ankle instability (CAI) is a form of musculoskeletal disease that can occur after a lateral ankle sprain, and it is characterized by pain, recurrent ankle sprains, a feeling of "giving way" at the ankle joint, and sensorimotor deficits. There has been increasing evidence to suggest that plastic changes in the brain after the initial injury play an important role in CAI. As one modality to treat CAI, whole-body vibration (WBV) has been found to be beneficial for treating the sensorimotor deficits accompanying CAI, but whether these benefits are associated with brain plasticity remains unknown. Therefore, the current study aims to investigate the effect of WBV on sensorimotor deficits and determine its correlation with plastic changes in the brain. METHODS: The present study is a single-blind randomized controlled trial. A total of 80 participants with CAI recruited from the university and local communities will be divided into 4 groups: whole-body vibration and balance training (WBVBT), balance training (BT), whole-body vibration (WBV), and control group. Participants will be given the WBV intervention (25-38 Hz, 1.3-2 mm, 3-time per week, 6-week) supervised by a professional therapist. Primary outcome measures are sensorimotor function including strength, balance, proprioception and functional performance. Brain plasticity will be evaluated by corticomotor excitability, inhibition, and representation of muscles, as measured by transcranial magnetic stimulation. Activation of brain areas will be assessed through functional near-infrared spectroscopy. Secondary outcome measures are self-reported functional outcomes involving the Cumberland Ankle Instability Tool and the Foot and Ankle Ability Measure. All tests will be conducted before and after the WBV intervention, and at 2-week follow-up. Perprotocol and intention-to-treat analysis will be applied if any participants withdraw. DISCUSSION: This is the first trial to investigate the role of brain plasticity in sensorimotor changes brought by WBV for individuals with CAI. As plastic changes in the brain have been an increasingly important aspect in CAI, the results of the current study can provide insight into the treatment of CAI from the perspective of brain plasticity. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2300068972); registered on 02 March 2023.
RESUMO
This study examined the effects of methyltransferase-like 3 (METTL3) on ferroptosis during intracerebral hemorrhage (ICH) progression. The brain microvascular endothelial cells (BMVECs) were stimulated with oxygen and glucose deprivation (OGD) and hemin to establish an ICH model. Cell viability was tested using a CCK8 assay. The levels of Fe2+, glutathione, reactive oxygen species, LPO, and MDA were determined using the corresponding commercial kits. Cell death was analyzed using TUNEL and propidium iodide staining. The correlation between METTL3 and glutathione peroxidase 4 (GPX4) was analyzed using Spearman's correlation test and further confirmed using the CHIP assay. Western blotting and RT-qPCR were performed to measure the relative expression levels. Mice were injected with 0.2 units collagenase IV to establish an ICH model in vivo. We found that the Fe2+, reactive oxygen species, LPO, and MDA levels were enhanced, and glutathione was depleted in OGD/H-treated BMVECs as well as in ICH mice. Additionally, cell viability and SLC7A11 protein levels decreased, and cell death and TFR1 protein levels increased in OGD/H-treated BMVECs. METTL3 silencing relieves OGD/H-induced injury in BMVECs. In addition, METTL3 was significantly negatively related to GPX4, which was further confirmed by the CHIP assay. Silencing of METTL3 decreased the N6-methyladenosine levels of GPX4 and increased its mRNA levels of GPX4. GPX4 knockdown neutralized the role of METTL3 in OGD/H-treated BMVECs. These results implied that ferroptosis occurred in the ODG/H-treated BMVECs and ICH mouse models. METTL3 silencing effectively suppressed ferroptosis by regulating N6-methyladenosine and mRNA levels of GPX4.
Assuntos
Hemorragia Cerebral , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Células Endoteliais/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Metiltransferases/metabolismo , Camundongos , Oxigênio/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Thoracoscopic radical lobectomy is a routine procedure for radical surgery of lung cancer. Meanwhile, thoracoscopic surgery has been gradually transformed from assisted small incision and multiport thoracoscopic radical surgery to uniportal thoracoscopic surgery for treatment of early-stage lung cancers. However, there are still controversies regarding the efficacy and feasibility of 2 surgical methods. The purpose of this study is to investigate the effect and feasibility of uniportal thoracoscopic surgery for treatment of early-stage lung cancer in a primary hospital. METHODS: Clinical data of 142 patients with early-stage lung cancer were retrospectively chosen in the period from September 2019 to March 2021 in our hospital and divided into 2 groups: a control group (66 patients) with 3-port thoracoscopic radical surgery and an experimental group (76 patients) with uniportal thoracoscopic radical surgery. The baseline clinical data, perioperative clinical data, and lymph node dissection of 2 groups were compared. RESULTS: There was no significant difference in baseline general clinical data between 2 groups (P>0.05), and no significant difference in the incidence of postoperative complications, conversion rate, or operation time between 2 groups (P>0.05). The intraoperative blood loss volume, postoperative chest drainage volume, postoperative hospitalization time, and postoperative catheter time of experimental group were significantly lower than those of control group (P<0.05). There was no significant difference in the total number of lymph node dissection stations and lymph node dissections, the number of N2 lymph node dissection stations, or N2 lymph node dissections between 2 groups (P>0.05). There was also no significant difference in the number of left and right lymph node dissection stations between 2 groups (P>0.05). CONCLUSIONS: Compared with 3-port thoracoscopic radical surgery, uniportal thoracoscopic radical surgery in the treatment of patients with early-stage lung cancer provides the same effect of lymph node dissection and has advantages in reducing surgical trauma and accelerating postoperative rehabilitation, popularizing for use in primary hospitals.
RESUMO
Sufficient interfragmental movement is the key to successful fracture healing in the theory of secondary bone healing. The far-cortical locking technique enables both stiffness reduction and parallel motion for ideal callus formation and fracture healing, but the influence of plate-bone gap on the performance of far-cortical locking technique remains unclear. The current study conducted a series of finite element analyses with mechanical validation to clarify this issue. Plate-bone gaps were assigned by 1, 2, 3, and 4 mm in a simulated mid-shaft fracture model fixed with locking plate and six semi-rigid locking screws. Axial compressive load to 500 N was applied to the fixation structure to evaluate the structural stiffness, pattern of interfragmental movement (parallel motion), and stresses on the screws. Results revealed the increased plate-bone gaps reduced the structural in order (315.3, 288.8, 264.9, and 243.4 N/mm). Tilting angles for determining parallel interfragmental movement (1.58°-1.85°) and stresses on semi-rigid screws for evaluating implant safety were not severely altered. Greater stresses were found on the screws adjacent to the fracture site in all simulated models. The current study suggested that 1 mm gap between the locking plate and the bone shall be ideal in view of parallel motion achieved balanced callus formation in far-cortical locking technique. Issue of reducing structural stiffness with limited plate-bone gap distance should be further investigated.
Assuntos
Parafusos Ósseos , Fixação Interna de Fraturas , Fenômenos Biomecânicos , Placas Ósseas , Análise de Elementos Finitos , Consolidação da FraturaRESUMO
Osteosarcoma is the most frequent primary bone tumor affects adolescents and young adults. Recently, microRNAs (miRNAs) are short, non-coding and endogenous RNAs that played as important roles in the initiation and progression of tumors. In this study, we try to explore the biological function and expression of miR-610 in the osteosarcoma. We showed that miR-610 expression was downregulated in the osteosarcoma tissues and cell lines. Elevated expression of miR-610 suppressed the osteosarcoma cell proliferation, cell cycle, invasion and EMT program. Moreover, overexpression of miR-610 increased sensitivity of MG-63 and U2OS cells to cisplatin. Twist1 was identified as a direct target gene of miR-610 in the osteosarcoma cell. Furthermore, we demonstrated that Twist1 was upregulated in the osteosarcoma tissues and cell lines. The expression of Twist1 was negatively associated with the expression of miR-610 expression in the osteosarcoma tissues. Ectopic expression of Twist1 inhibited the sensitivity of miR-610-overexpressing MG-63 cells to cisplatin. We also showed that overexpression of Twist1 increased the proliferation and invasion of miR-610-overexpressing MG-63 cells. These data indicated that ectopic expression of miR-610 suppressed the osteosarcoma cell proliferation, cell cylce, invasion and increased the sensitivity of osteosarcoma cells to cisplatin through targeting the Twist1 expression.