Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Physiol Genomics ; 51(11): 553-561, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588871

RESUMO

Chemerin is a contractile adipokine, produced in liver and fat, and removal of the protein by antisense oligonucleotides (ASO) lowers blood pressure in the normal Sprague Dawley rat. In humans, chemerin is positively associated with blood pressure and obesity so we hypothesized that in a model of hypertension derived from high-fat (HF) feeding, the chemerin ASO would reduce blood pressure more than a high-salt (HS) model. Male Dahl S rats were given a HF (60% kcal fat; age 3-24 wk) or HS diet (4% salt; age 20-24 wk to match age and blood pressure of HF animals). Scrambled control, whole body, or liver-specific ASOs that knock down chemerin were delivered subcutaneously once per week for 4 wk with tissue and blood collected 2 days after the last injection. Conscious blood pressure was measured 24 h/day by radiotelemetry. By the end of whole body ASO administration, blood pressure of HF animals had fallen 29 ± 2 mmHg below baseline, while blood pressure of HS-diet animals fell by only 12 ± 4 mmHg below baseline. Administration of a liver-specific ASO to HF Dahl S resulted in a 6 ± 2 mmHg fall in blood pressure below baseline. Successful knockdown of chemerin in both the whole body and liver-specific administration was confirmed by Western and PCR. These results suggest that chemerin, not derived from liver but potentially from adipose tissue, is an important driver of hypertension associated with high fat. This knowledge could lead to the development of antihypertensive treatments specifically targeted to obesity-associated hypertension.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Quimiocinas/antagonistas & inibidores , Gorduras na Dieta/farmacologia , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/antagonistas & inibidores , Cloreto de Sódio na Dieta/farmacologia , Tecido Adiposo/metabolismo , Animais , Quimiocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos Endogâmicos Dahl
2.
FASEB J ; : fj201800479, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906243

RESUMO

Measures of the adipokine chemerin are elevated in multiple cardiovascular diseases, including hypertension, but little mechanistic work has been done to implicate chemerin as being causative in such diseases. The chemerin knockout (KO) rat was created to test the hypothesis that removal of chemerin would reduce pressure in the normal and hypertensive state. Western analyses confirmed loss of chemerin in the plasma and tissues of the KO vs. wild-type (WT) rats. Chemerin concentration in plasma and tissues was lower in WT females than in WT males, as determined by Western analysis. Conscious male and female KO rats had modest differences in baseline measures vs. the WT that included systolic, diastolic, mean arterial and pulse pressures, and heart rate, all measured telemetrically. The mineralocorticoid deoxycorticosterone acetate (DOCA) and salt water, combined with uninephrectomy as a hypertensive stimulus, elevated mean and systolic blood pressures of the male KO higher than the male WT. By contrast, all pressures in the female KO were lower than their WT throughout DOCA-salt treatment. These results revealed an unexpected sex difference in chemerin expression and the ability of chemerin to modify blood pressure in response to a hypertensive challenge.-Watts, S. W., Darios, E. S., Mullick, A. E., Garver, H., Saunders, T. L., Hughes, E. D., Filipiak, W. E., Zeidler, M. G., McMullen, N., Sinal, C. J., Kumar, R. K., Ferland, D. J., Fink, G. D. The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension.

3.
J Pharmacol Exp Ther ; 365(2): 212-218, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29467310

RESUMO

Chemerin is an inflammatory adipokine positively associated with hypertension and obesity. The majority of chemerin derives from the liver and adipose tissue, however, their individual contributions to blood pressure are unknown. We began studying chemerin in the normal rat using antisense oligonucleotides (ASO) with whole-body activity (Gen 2.5 chemerin ASO) or liver-restricted activity (GalNAc chemerin ASO). We hypothesized that in normotensive male Sprague-Dawley rats, circulating chemerin is predominately liver-derived and regulates blood pressure. A dosing study of the Gen 2.5 chemerin ASO (with a scrambled control ASO) supported 25 mg/kg as the appropriate dose. GalNAc chemerin ASO was also assessed and used at 10 mg/kg. Radiotelemetry monitored mean arterial pressure (MAP) for a 1-week baseline and weekly subcutaneous ASO injections for 4 weeks. Two days after the final injection, animals were euthanized for tissue reverse transcription-polymerase chain reaction and chemerin Western analysis. Gen 2.5 chemerin ASO treatments reduced chemerin mRNA and protein in liver, retroperitoneal fat (RP), and mesenteric perivascular adipose tissue (mPVAT), as well as reducing protein in plasma. GalNAc chemerin ASO treatments reduced chemerin mRNA and protein in liver and chemerin protein in plasma but had no effect on expression in RP fat or mPVAT. Gen 2.5 chemerin ASO treatment reduced MAP compared with control ASO but was unchanged in animals receiving the GalNAc chemerin ASO. Although circulating chemerin is liver-derived, it does not play a major role in blood pressure regulation. Local effects of chemerin from fat may explain this discrepancy and support chemerin's association with hypertension and obesity.


Assuntos
Pressão Sanguínea/genética , Quimiocinas/deficiência , Quimiocinas/genética , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fígado/metabolismo , Oligonucleotídeos Antissenso/genética , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
4.
Am J Obstet Gynecol ; 212(2): 244.e1-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25108144

RESUMO

OBJECTIVE: A controversy exists as to whether functional smooth muscle exists in the cervix before and during pregnancy, potentially continuous with the uterus. We hypothesized that cervical smooth muscle persists through pregnancy and is functional. STUDY DESIGN: Uteri and cervices were taken from female virgin, 11 day, and 20 day (near labor) pregnant rats. All experiments used the uterus as a positive control. Three different smooth muscle proteins (smooth muscle α-actin, SM-22α, and calponin-1) allowed immunohistochemical detection of the continuous nature of the smooth muscle from the vagina, cervix, and uterus. Tissues were also hung in isolated tissue baths for the measurement of isometric smooth muscle contraction. Uterine and cervical homogenates were also used in Western analyses to measure protein expression. RESULTS: Immunohistochemistry revealed there to be smooth muscle as validated by an expression of all 3 markers in the cervix. This smooth muscle was continuous with that of the vagina and uterus. Smooth muscle α-actin was detected in virgin tissue (291.3 ± 32.2 arbitrary densitometry units/ß-actin), day 11 (416.8 ± 19.5), and day 20 pregnant tissue (293.0 ± 34.4). The virgin, day 11, and day 20 cervices contracted 2.18 ± 0.24 g, 1.46 ± 0.08 g, and 3.88 ± 0.49 g (respectively) to depolarizing KCl. Cervices contracted at day 20 to the cholinergic muscarinic agonist carbamylcholine (maximum, 133% ± 18.2% KCl contraction, n = 4). CONCLUSION: These findings strongly support that smooth muscle is present in the cervix through pregnancy and continuous with the uterus.


Assuntos
Actinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Colo do Útero/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Gravidez/metabolismo , Vagina/metabolismo , Animais , Colo do Útero/anatomia & histologia , Colo do Útero/fisiologia , Feminino , Imuno-Histoquímica , Contração Isométrica/fisiologia , Músculo Liso/anatomia & histologia , Músculo Liso/fisiologia , Ratos , Útero/anatomia & histologia , Útero/metabolismo , Útero/fisiologia , Vagina/anatomia & histologia , Calponinas
5.
Pharmacol Res ; 99: 351-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26211950

RESUMO

When chemerin was discovered in 1997, it was relegated to being a protein associated with the normal skin function contrasting the setting of psoriasis. However, with the discovery of multiple receptors for the chemerin protein and a vast collection of associations with various pathologies, chemerin has global influence capable of regulating chemotactic, adipokine, autocrine/paracrine, adipogenic, angiogenic, and reproductive functions. These individual abilities of chemerin are important for understanding its basic pharmacology and physiology, but application of these principles to human pathology relies on the ability of scientists and physicians to view this protein from a much wider, all-encompassing angle. A global participant in the action of chemerin is the cardiovascular system (CVS). Although the CVS may not have as many direct interactions (e.g. smooth muscle in endothelium) with chemerin as it does indirect (e.g. chemerin activation in the lumen by proteases), our basic understanding of the CVS and its relation to chemerin is necessary to form a proper grasp of its individual actions and make the applications to pathology. This review provides a fundamental, yet comprehensive review of chemerin that inherently identifies the CVS as a necessary link between chemerin and its associated pathologies, but also calls for basic cardiovascular research as the solution to this chasm between knowledge and application.


Assuntos
Sistema Cardiovascular/metabolismo , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Humanos , Pesquisa
6.
Am J Hypertens ; 33(11): 975-986, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32453820

RESUMO

The protein chemerin (tazarotene-induced gene, TIG2; RARRES2) is a relatively new adipokine. Many studies support that circulating chemerin levels associate strongly and positively with body mass index, visceral fat, and blood pressure. Here, we focus on the specific relationship of chemerin and blood pressure with the goal of understanding whether and how chemerin drives (pathological) changes in blood pressure such that it could be interfered with therapeutically. We dissect the biosynthesis of chemerin and how current antihypertensive medications change chemerin metabolism. This is followed with a review of what is known about where chemerin is synthesized in the body and what chemerin and its receptors can do to the physiological function of organs important to blood pressure determination (e.g., brain, heart, kidneys, blood vessels, adrenal, and sympathetic nervous system). We synthesize from the literature our best understanding of the mechanisms by which chemerin modifies blood pressure, with knowledge that plasma/serum levels of chemerin may be limited in their pathological relevance. This review reveals several gaps in our knowledge of chemerin biology that could be filled by the collective work of protein chemists, biologists, pharmacologists, and clinicians.


Assuntos
Pressão Sanguínea/fisiologia , Quimiocinas , Hipertensão/metabolismo , Animais , Quimiocinas/biossíntese , Quimiocinas/metabolismo , Humanos , Modelos Animais , Obesidade/metabolismo
7.
PLoS One ; 15(2): e0229251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092101

RESUMO

Since chemerin's identification as an adipokine, it has been associated with a number of human diseases including diabetes and obesity. However, the basic scientific foundation for these clinical determinations is still lacking. Fibroblastic mouse 3T3 cells are unable to develop lipid droplets if chemerin is not present. Thus, we hypothesized that an in vivo rat model chemerin knockout (KO; an advancement from the previously mentioned in vitro cultures) would have limited accumulation of lipid in adipocytes compared to their wild-type (WT) counterparts. Female WT/KO rats (Sprague Dawley background) were fed a low-fat diet starting at 8 weeks of age with weekly body weight and food consumption monitoring. At 25 weeks of age, adipose tissue depots were dissected and flash frozen for PCR analysis or fixed with paraformaldehyde for histology. Over the 17 weeks of experimentation, WT and KO animals did not have differences in total body weight or food consumption but KO animals had a significantly reduced amount of visceral fat compared to WT animals (via microCT at 8 and 25 weeks). Histology of retroperitoneal and mesenteric depots demonstrated a significant leftward shift in adipocyte size in the mesenteric but not the retroperitoneal depot of the KO compared to WT animals. Similarly, in the mesenteric fat of the KO rat, gene expression of adiponectin, fatty acid synthase, perilipin, and leptin were significantly reduced compared to mesenteric fat of WT animals and retroperitoneal fat of both WT and KO animals. Adiponectin was highlighted by a protein-protein interaction network as being important for the physiological effects of chemerin removal. These data are the first, to our knowledge, to demonstrate chemerin's adipokine potential in vivo and identify it as fat depot location-specific.


Assuntos
Adipogenia/genética , Quimiocinas/análise , Adipócitos/fisiologia , Adipocinas/fisiologia , Tecido Adiposo/citologia , Animais , Peso Corporal , Quimiocinas/genética , Quimiocinas/fisiologia , Dieta com Restrição de Gorduras , Técnicas de Inativação de Genes , Gordura Intra-Abdominal , Gotículas Lipídicas , Mesentério/citologia , Ratos , Ratos Sprague-Dawley
8.
Vascul Pharmacol ; 88: 30-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890480

RESUMO

Chemerin is an adipokine associated with increased blood pressure, and may link obesity with hypertension. We tested the hypothesis that chemerin-induced contraction of the vasculature occurs via calcium flux in smooth muscle cells. Isometric contraction of rat aortic rings was performed in parallel with calcium kinetics of rat aortic smooth muscle cells to assess the possible signaling pathway. Chemerin-9 (nonapeptide of the chemerin S157 isoform) caused a concentration-dependent contraction of isolated aorta (EC50 100nM) and elicited a concentration-dependent intracellular calcium response (EC50 10nM). Pertussis toxin (Gi inhibitor), verapamil (L-type Ca2+ channel inhibitor), PP1 (Src inhibitor), and Y27632 (Rho kinase inhibitor) reduced both calcium influx and isometric contraction to chemerin-9 but PD098059 (Erk MAPK inhibitor) and U73122 (PLC inhibitor) had little to no effect on either measure of chemerin signaling. Although our primary aim was to examine chemerin signaling, we also highlight differences in the mechanisms of chemerin-9 and recombinant chemerin S157. These data support a chemerin-induced contractile mechanism in vascular smooth muscle that functions through Gi proteins to activate L-type Ca2+ channels, Src, and Rho kinase. There is mounting evidence linking chemerin to hypertension and this mechanism brings us closer to targeting chemerin as a form of therapy.


Assuntos
Aorta/metabolismo , Cálcio/metabolismo , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Quimiocinas/administração & dosagem , Relação Dose-Resposta a Droga , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA