Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 477(7364): 330-4, 2011 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-21804564

RESUMO

Intestinal immune homeostasis depends on a tightly regulated cross talk between commensal bacteria, mucosal immune cells and intestinal epithelial cells (IECs). Epithelial barrier disruption is considered to be a potential cause of inflammatory bowel disease; however, the mechanisms regulating intestinal epithelial integrity are poorly understood. Here we show that mice with IEC-specific knockout of FADD (FADD(IEC-KO)), an adaptor protein required for death-receptor-induced apoptosis, spontaneously developed epithelial cell necrosis, loss of Paneth cells, enteritis and severe erosive colitis. Genetic deficiency in RIP3, a critical regulator of programmed necrosis, prevented the development of spontaneous pathology in both the small intestine and colon of FADD(IEC-KO) mice, demonstrating that intestinal inflammation is triggered by RIP3-dependent death of FADD-deficient IECs. Epithelial-specific inhibition of CYLD, a deubiquitinase that regulates cellular necrosis, prevented colitis development in FADD(IEC-KO) but not in NEMO(IEC-KO) mice, showing that different mechanisms mediated death of colonic epithelial cells in these two models. In FADD(IEC-KO) mice, TNF deficiency ameliorated colon inflammation, whereas MYD88 deficiency and also elimination of the microbiota prevented colon inflammation, indicating that bacteria-mediated Toll-like-receptor signalling drives colitis by inducing the expression of TNF and other cytokines. However, neither CYLD, TNF or MYD88 deficiency nor elimination of the microbiota could prevent Paneth cell loss and enteritis in FADD(IEC-KO) mice, showing that different mechanisms drive RIP3-dependent necrosis of FADD-deficient IECs in the small and large bowel. Therefore, by inhibiting RIP3-mediated IEC necrosis, FADD preserves epithelial barrier integrity and antibacterial defence, maintains homeostasis and prevents chronic intestinal inflammation. Collectively, these results show that mechanisms preventing RIP3-mediated epithelial cell death are critical for the maintenance of intestinal homeostasis and indicate that programmed necrosis of IECs might be implicated in the pathogenesis of inflammatory bowel disease, in which Paneth cell and barrier defects are thought to contribute to intestinal inflammation.


Assuntos
Colite/patologia , Colo/patologia , Enterite/patologia , Células Epiteliais/patologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose , Doença Crônica , Colite/enzimologia , Colite/metabolismo , Colo/enzimologia , Colo/metabolismo , Cisteína Endopeptidases/metabolismo , Enzima Desubiquitinante CYLD , Enterite/enzimologia , Enterite/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Proteína de Domínio de Morte Associada a Fas/deficiência , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metagenoma/fisiologia , Camundongos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Necrose , Celulas de Paneth/patologia , Transdução de Sinais , Fatores de Necrose Tumoral/deficiência
2.
Mater Today Bio ; 19: 100593, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36923364

RESUMO

Topographical patterns are a powerful tool to study directional migration. Grooved substrates have been extensively used as in vitro models of aligned extracellular matrix fibers because they induce cell elongation, alignment, and migration through a phenomenon known as contact guidance. This process, which involves the orientation of focal adhesions, F-actin, and microtubule cytoskeleton along the direction of the grooves, has been primarily studied on hard materials of non-physiological stiffness. But how it unfolds when the stiffness of the grooves varies within the physiological range is less known. Here we show that substrate stiffness modulates the cellular response to topographical contact guidance. We find that for fibroblasts, while focal adhesions and actin respond to topography independently of the stiffness, microtubules show a stiffness-dependent response that regulates contact guidance. On the other hand, both clusters and single breast carcinoma epithelial cells display stiffness-dependent contact guidance, leading to more directional and efficient migration when increasing substrate stiffness. These results suggest that both matrix stiffening and alignment of extracellular matrix fibers cooperate during directional cell migration, and that the outcome differs between cell types depending on how they organize their cytoskeletons.

3.
Adv Healthc Mater ; 11(22): e2201172, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073021

RESUMO

Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.


Assuntos
Mucosa Intestinal , Organoides , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Intestinos , Intestino Delgado , Diferenciação Celular/fisiologia
4.
Bio Protoc ; 10(3): e3514, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654739

RESUMO

Developing protocols to obtain intestinal epithelial monolayers that recapitulate in vivo physiology to overcome the limitations of the organoids' closed geometry has become of great interest during the last few years. Most of the developed culture models showed physiological-relevant cell composition but did not prove self-renewing capacities. Here, we show a simple method to obtain mouse small intestine-derived epithelial monolayers organized into proliferative crypt-like domains, containing stem cells, and differentiated villus-like regions, closely resembling the in vivo cell composition and distribution. In addition, we adapted our model to a tissue culture format compatible with functional studies and prove close to physiological barrier properties of our in vitro epithelial monolayers. Thus, we have set-up a protocol to generate physiologically relevant intestinal epithelial monolayers to be employed in assays where independent access to both luminal and basolateral compartments is needed, such as drug absorption, intracellular trafficking and microbiome-epithelium interaction assays.

5.
Biofabrication ; 12(2): 025023, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32050182

RESUMO

The stiffness and topography of a cell's extracellular matrix (ECM) are physical cues that play a key role in regulating processes that determine cellular fate and function. While substrate stiffness can dictate cell differentiation lineage, migration, and self-organization, topographical features can change the cell's differentiation profile or migration ability. Although both physical cues are present and intrinsic to the native tissues in vivo, in vitro studies have been hampered by the lack of technological set-ups that would be compatible with cell culture and characterization. In vitro studies therefore either focused on screening stiffness effects in cells cultured on flat substrates or on determining topography effects in cells cultured onto hard materials. Here, we present a reliable, microfabrication method to obtain well defined topographical structures of micrometer size (5-10 µm) on soft polyacrylamide hydrogels with tunable mechanical stiffness (3-145 kPa) that closely mimic the in vivo situation. Topographically microstructured polyacrylamide hydrogels are polymerized by capillary force lithography using flexible materials as molds. The topographical microstructures are resistant to swelling, can be conformally functionalized by ECM proteins and sustain the growth of cell lines (fibroblasts and myoblasts) and primary cells (mouse intestinal epithelial cells). Our method can independently control stiffness and topography, which allows to individually assess the contribution of each physical cue to cell response or to explore potential synergistic effects. We anticipate that our fabrication method will be of great utility in tissue engineering and biophysics, especially for applications where the use of complex in vivo-like environments is of paramount importance.


Assuntos
Resinas Acrílicas/química , Técnicas de Cultura de Células/métodos , Hidrogéis/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Hidrogéis/farmacologia , Camundongos , Engenharia Tecidual
6.
J Mol Cell Biol ; 12(7): 499-514, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32162654

RESUMO

Restoration of kidney tubular epithelium following sublethal injury sequentially involves partial epithelial-mesenchymal transition (pEMT), proliferation, and further redifferentiation into specialized tubule epithelial cells (TECs). Because the immunosuppressant cyclosporine-A produces pEMT in TECs and inhibits the peptidyl-prolyl isomerase (PPIase) activity of cyclophilin (Cyp) proteins, we hypothesized that cyclophilins could regulate TEC phenotype. Here we demonstrate that in cultured TECs, CypA silencing triggers loss of epithelial features and enhances transforming growth factor ß (TGFß)-induced EMT in association with upregulation of epithelial repressors Slug and Snail. This pro-epithelial action of CypA relies on its PPIase activity. By contrast, CypB emerges as an epithelial repressor, because CypB silencing promotes epithelial differentiation, prevents TGFß-induced EMT, and induces tubular structures in 3D cultures. In addition, in the kidneys of CypB knockout mice subjected to unilateral ureteral obstruction, inflammatory and pro-fibrotic events were attenuated. CypB silencing/knockout leads to Slug, but not Snail, downregulation. CypB support of Slug expression depends on its endoplasmic reticulum location, where it interacts with calreticulin, a calcium-buffering chaperone related to Slug expression. As CypB silencing reduces ionomycin-induced calcium release and Slug upregulation, we suggest that Slug expression may rely on CypB modulation of calreticulin-dependent calcium signaling. In conclusion, this work uncovers new roles for CypA and CypB in modulating TEC plasticity and identifies CypB as a druggable target potentially relevant in promoting kidney repair.


Assuntos
Ciclofilinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Túbulos Renais/citologia , Animais , Basigina/metabolismo , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células Epiteliais/efeitos dos fármacos , Fibrose , Inativação Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Ionomicina/farmacologia , Camundongos , Fenótipo , Transporte Proteico/efeitos dos fármacos , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Tapsigargina/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Obstrução Ureteral/patologia
7.
Biofabrication ; 12(2): 025008, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31805546

RESUMO

Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e. they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.


Assuntos
Gelatina/química , Hidrogéis/química , Mucosa Intestinal/citologia , Metacrilatos/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Células CACO-2 , Adesão Celular , Proliferação de Células , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Impressão Tridimensional/instrumentação , Engenharia Tecidual/instrumentação
8.
Sci Rep ; 9(1): 18822, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806863

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Sci Rep ; 9(1): 10140, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300688

RESUMO

Intestinal organoids have emerged as a powerful in vitro tool for studying intestinal biology due to their resemblance to in vivo tissue at the structural and functional levels. However, their sphere-like geometry prevents access to the apical side of the epithelium, making them unsuitable for standard functional assays designed for flat cell monolayers. Here, we describe a simple method for the formation of epithelial monolayers that recapitulates the in vivo-like cell type composition and organization and that is suitable for functional tissue barrier assays. In our approach, epithelial monolayer spreading is driven by the substrate stiffness, while tissue barrier function is achieved by the basolateral delivery of medium enriched with stem cell niche and myofibroblast-derived factors. These monolayers contain major intestinal epithelial cell types organized into proliferating crypt-like domains and differentiated villus-like regions, closely resembling the in vivo cell distribution. As a unique characteristic, these epithelial monolayers form functional epithelial barriers with an accessible apical surface and physiologically relevant transepithelial electrical resistance values. Our technology offers an up-to-date and novel culture method for intestinal epithelium, providing an in vivo-like cell composition and distribution in a tissue culture format compatible with high-throughput drug absorption or microbe-epithelium interaction studies.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Intestino Delgado/citologia , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proliferação de Células , Colágeno , Meios de Cultivo Condicionados/farmacologia , Combinação de Medicamentos , Proteínas de Fluorescência Verde/genética , Laminina , Membranas Artificiais , Organoides , Proteoglicanas , Proteína Wnt3A/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-30619844

RESUMO

Epithelial tissues are composed of layers of tightly connected cells shaped into complex three-dimensional (3D) structures such as cysts, tubules, or invaginations. These complex 3D structures are important for organ-specific functions and often create biochemical gradients that guide cell positioning and compartmentalization within the organ. One of the main functions of epithelia is to act as physical barriers that protect the underlying tissues from external insults. In vitro, epithelial barriers are usually mimicked by oversimplified models based on cell lines grown as monolayers on flat surfaces. While useful to answer certain questions, these models cannot fully capture the in vivo organ physiology and often yield poor predictions. In order to progress further in basic and translational research, disease modeling, drug discovery, and regenerative medicine, it is essential to advance the development of new in vitro predictive models of epithelial tissues that are capable of representing the in vivo-like structures and organ functionality more accurately. Here, we review current strategies for obtaining biomimetic systems in the form of advanced in vitro models that allow for more reliable and safer preclinical tests. The current state of the art and potential applications of self-organized cell-based systems, organ-on-a-chip devices that incorporate sensors and monitoring capabilities, as well as microfabrication techniques including bioprinting and photolithography, are discussed. These techniques could be combined to help provide highly predictive drug tests for patient-specific conditions in the near future.

11.
Nat Commun ; 7: 12508, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561390

RESUMO

The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD.


Assuntos
Carcinogênese/genética , Cisteína Endopeptidases/metabolismo , Reparo do DNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Azoximetano/toxicidade , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína Endopeptidases/genética , Dano ao DNA/fisiologia , Enzima Desubiquitinante CYLD , Feminino , Predisposição Genética para Doença , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Lisina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA