Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Breed Genet ; 139(4): 476-487, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35218589

RESUMO

Copy number variations (CNV) are an important source of genetic variation. CNV has been increasingly studied and frequently associated with diseases and productive traits in livestock animals. However, CNV-based genome-wide association studies (GWAS) in Santa Inês sheep, one of the principal sheep breeds in Brazil, have not yet been reported. Thus, the aim of this study was to investigate the association between CNV and growth, efficiency and carcass traits in sheep. The Illumina OvineSNP50 BeadChip array was used to detect CNV in 491 Santa Inês individuals. Then, CNV-based GWAS was performed with a linear mixed model approach considering a genomic relationship matrix, for ten traits: (1) growth: body weight at three (W3) and six (W6) months of age; (2) efficiency: residual feed intake (RFI) and feed efficiency (FE) and (3) carcass: external carcass length (ECL), leg length (LL), carcass yield (CY), commercial cuts weight (CCW), loin eye area (LEA) and subcutaneous fat thickness (SFT). We identified 1,167 autosomal CNV in 438 sheep, with 294 non-redundant CNV, ranging from 21.8 to 861.9 kb, merged into 216 distinct copy number variation regions (CNVRs). One significant CNV segment (pFDR -value<0.05) in OAR3 was associated with CY, while another significant CNV in OAR6 was associated with RFI. Additionally, another 5 CNV segments were considered relevant for investigation in the future studies. The significant segments overlapped 4 QTLs and spanned 8 genes, including the SPAST,TGFA and ADGRL3 genes, involved in cell differentiation and energy metabolism. Therefore, the results of the present study increase knowledge about CNV in sheep, their possible impacts on productive traits, and provide information for future investigations, being especially useful for those interested in structural variations in the sheep genome.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos/genética
2.
BMC Genomics ; 22(1): 354, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001004

RESUMO

BACKGROUND: Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated into segments and association analyses were performed with linear mixed models considering a genomic relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age. RESULTS: We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value = 0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value = 0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes regulation and potassium channels. CONCLUSIONS: Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens.


Assuntos
Galinhas , Variações do Número de Cópias de DNA , Animais , Galinhas/genética , Genoma , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 14(1): 13682, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871745

RESUMO

Feed cost represents a major economic determinant within cattle production, amounting to an estimated 75% of the total variable costs. Consequently, comprehensive approaches such as optimizing feed utilization through alternative feed sources, alongside the selection of feed-efficient animals, are of great significance. Here, we investigate the effect of two diets, traditional corn-grain fed and alternative by-product based, on 14 phenotypes related to feed, methane emission and production efficiency and on multi-tissue transcriptomics data from liver, muscle, and rumen wall, derived from 52 Nellore bulls, 26 on each diet. To this end, diets were contrasted at the level of phenotype, gene expression, and gene-phenotype network connectivity. As regards the phenotypic level, at a P value < 0.05, significant differences were found in favour of the alternative diet for average daily weight gain at finishing, dry matter intake at finishing, methane emission, carcass yield and subcutaneous fat thickness at the rib-eye muscle area. In terms of the transcriptional level of the 14,776 genes expressed across the examined tissues, we found 487, 484, and 499 genes differentially expressed due to diet in liver, muscle, and rumen, respectively (P value < 0.01). To explore differentially connected phenotypes across both diet-based networks, we focused on the phenotypes with the largest change in average number of connections within diets and tissues, namely methane emission and carcass yield, highlighting, in particular, gene expression changes involving SREBF2, and revealing the largest differential connectivity in rumen and muscle, respectively. Similarly, from examination of differentially connected genes across diets, the top-ranked most differentially connected regulators within each tissue were MEOX1, PTTG1, and BASP1 in liver, muscle, and rumen, respectively. Changes in gene co-expression patterns suggest activation or suppression of specific biological processes and pathways in response to dietary interventions, consequently impacting the phenotype. The identification of genes that respond differently to diets and their associated phenotypic effects serves as a crucial stepping stone for further investigations, aiming to build upon our discoveries. Ultimately, such advancements hold the promise of improving animal welfare, productivity, and sustainability in livestock farming.


Assuntos
Ração Animal , Dieta , Fígado , Rúmen , Animais , Bovinos/genética , Fígado/metabolismo , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Transcriptoma , Masculino , Músculo Esquelético/metabolismo , Fenótipo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA