Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110514

RESUMO

Pre-clinical models indicate that Amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans. Heart rate (HR; electrocardiography), beat-to-beat BP (photoplethysmography), and muscle sympathetic activity (MSNA, microneurography) were continuously measured in 10 young subjects (4 females) during rest across two randomized experimental visits: (1) after 3 hours of oral administration of placebo (PLA - 10 mg of methylcellulose within a gelatin capsule) and (2) after 3 hours of oral administration of AMD (10 mg). Visits were separated for at least 48 hours. We calculated the standard deviation and other indices of BP variability. Spontaneous cardiac baroreflex was assessed via the sequence technique and cardiac autonomic modulation through time- and frequency-domain HR variability. The sensitivity (gain) of the sympathetic baroreflex was determined via weighted linear regression analysis between MSNA and diastolic BP. AMD did not affect HR, BP, and MSNA compared to PLA. Indexes of cardiac autonomic modulation (time- and frequency-domain HR variability) and BP variability were also unchanged after AMD ingestion. Likewise, AMD did not modify the gain of both spontaneous cardiac and sympathetic arterial baroreflex. A single oral dose of AMD does not affect spontaneous arterial baroreflex sensitivity and BP variability in healthy young adults.

2.
Theor Appl Genet ; 137(8): 189, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044035

RESUMO

KEY MESSAGE: Incorporating feature-engineered environmental data into machine learning-based genomic prediction models is an efficient approach to indirectly model genotype-by-environment interactions. Complementing phenotypic traits and molecular markers with high-dimensional data such as climate and soil information is becoming a common practice in breeding programs. This study explored new ways to combine non-genetic information in genomic prediction models using machine learning. Using the multi-environment trial data from the Genomes To Fields initiative, different models to predict maize grain yield were adjusted using various inputs: genetic, environmental, or a combination of both, either in an additive (genetic-and-environmental; G+E) or a multiplicative (genotype-by-environment interaction; GEI) manner. When including environmental data, the mean prediction accuracy of machine learning genomic prediction models increased up to 7% over the well-established Factor Analytic Multiplicative Mixed Model among the three cross-validation scenarios evaluated. Moreover, using the G+E model was more advantageous than the GEI model given the superior, or at least comparable, prediction accuracy, the lower usage of computational memory and time, and the flexibility of accounting for interactions by construction. Our results illustrate the flexibility provided by the ML framework, particularly with feature engineering. We show that the feature engineering stage offers a viable option for envirotyping and generates valuable information for machine learning-based genomic prediction models. Furthermore, we verified that the genotype-by-environment interactions may be considered using tree-based approaches without explicitly including interactions in the model. These findings support the growing interest in merging high-dimensional genotypic and environmental data into predictive modeling.


Assuntos
Interação Gene-Ambiente , Genótipo , Aprendizado de Máquina , Modelos Genéticos , Fenótipo , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Meio Ambiente , Melhoramento Vegetal/métodos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genômica/métodos
3.
J Physiol ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655827

RESUMO

The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.

4.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271929

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Astrocitoma/genética , Astrocitoma/patologia , Mutação/genética , Metilação de DNA/genética
5.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R501-R510, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348021

RESUMO

Resting beat-to-beat blood pressure variability is a powerful predictor of cardiovascular events and end-organ damage. However, its underlying mechanisms remain unknown. Herein, we tested the hypothesis that a potentiation of GABAergic synaptic transmission by diazepam would acutely increase resting beat-to-beat blood pressure variability. In 40 (17 females) young, normotensive subjects, resting beat-to-beat blood pressure (finger photoplethysmography) was continuously measured for 5-10 min, 60 min after the oral administration of either diazepam (10 mg) or placebo. The experiments were conducted in a randomized, double-blinded, and placebo-controlled design. Stroke volume was estimated from the blood pressure waveform (ModelFlow) permitting the calculation of cardiac output and total peripheral resistance. Direct recordings of muscle sympathetic nerve activity (MSNA, microneurography) were obtained in a subset of subjects (n = 13), and spontaneous cardiac and sympathetic baroreflex sensitivity were calculated. Compared with placebo, diazepam significantly increased the standard deviation of systolic blood pressure (4.7 ± 1.4 vs. 5.7 ± 1.5 mmHg, P = 0.001), diastolic blood pressure (3.8 ± 1.2 vs. 4.5 ± 1.2 mmHg, P = 0.007), and mean blood pressure (3.8 ± 1.1 vs. 4.5 ± 1.1 mmHg, P = 0.002), as well as cardiac output (469 ± 149 vs. 626 ± 259 mL/min, P < 0.001) and total peripheral resistance (1.0 ± 0.3 vs. 1.4 ± 0.6 mmHg/L/min, P < 0.001). Similar results were found using different indices of variability. Furthermore, diazepam reduced MSNA (placebo: 22 ± 6 vs. diazepam: 18 ± 8 bursts/min, P = 0.025) without affecting the arterial baroreflex control of heart rate (placebo: 18.6 ± 6.7 vs. diazepam: 18.8 ± 7.0 ms/mmHg, P = 0.87) and MSNA (placebo: -3.6 ± 1.2 vs. diazepam: -3.4 ± 1.5 bursts/100 Hb/mmHg, P = 0.55). Importantly, these findings were not impacted by biological sex. We conclude that GABAA receptors modulate resting beat-to-beat blood pressure variability in young adults.


Assuntos
Barorreflexo , Diazepam , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Diazepam/farmacologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Receptores de GABA-A , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica , Adulto Jovem
6.
J Physiol ; 599(16): 3993-4007, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245024

RESUMO

KEY POINTS: The proposed mechanism for the increased ventilation in response to hyperoxia includes a reduced brain CO2 -[H+ ] washout-induced central chemoreceptor stimulation that results from a decrease in cerebral perfusion and the weakening of the CO2 affinity for haemoglobin. Nonetheless, hyperoxia also results in excessive brain reactive oxygen species (ROS) formation/accumulation, which hypothetically increases central respiratory drive and causes hyperventilation. We then quantified ventilation, cerebral perfusion/metabolism, arterial/internal jugular vein blood gases and oxidant/antioxidant biomarkers in response to hyperoxia during intravenous infusion of saline or ascorbic acid to determine whether excessive ROS production/accumulation contributes to the hyperoxia-induced hyperventilation in humans. Ascorbic acid infusion augmented the antioxidant defence levels, blunted ROS production/accumulation and minimized both the reduction in cerebral perfusion and the increase in ventilation observed during saline infusion. Hyperoxic hyperventilation seems to be mediated by central chemoreceptor stimulation provoked by the interaction between an excessive ROS production/accumulation and reduced brain CO2 -[H+ ] washout. ABSTRACT: The hypothetical mechanism for the increase in ventilation ( V̇E ) in response to hyperoxia (HX) includes central chemoreceptor stimulation via reduced CO2 -[H+ ] washout. Nonetheless, hyperoxia disturbs redox homeostasis and raises the hypothesis that excessive brain reactive oxygen species (ROS) production/accumulation may increase the sensitivity to CO2 or even solely activate the central chemoreceptors, resulting in hyperventilation. To determine the mechanism behind the HX-evoked increase in V̇E , 10 healthy men (24 ± 4 years) underwent 10 min trials of HX under saline and ascorbic acid infusion. V̇E , arterial and right internal right jugular vein (ijv) partial pressure for oxygen (PO2 ) and CO2 (PCO2 ), pH, oxidant (8-isoprostane) and antioxidant (ascorbic acid) markers, as well as cerebral blood flow (CBF) (Duplex ultrasonography), were quantified at each hyperoxic trial. HX evoked an increase in arterial partial pressure for oxygen, followed by a hyperventilatory response, a reduction in CBF, an increase in arterial 8-isoprostane, and unchanged PijvCO2 and ijv pH. Intravenous ascorbic acid infusion augmented the arterial antioxidant marker, blunted the increase in arterial 8-isoprostane and attenuated both the reduction in CBF and the HX-induced hyperventilation. Although ascorbic acid infusion resulted in a slight increase in PijvCO2 and a substantial decrease in ijv pH, when compared with the saline bout, HX evoked a similar reduction and a paired increase in the trans-cerebral exchanges for PCO2 and pH, respectively. These findings indicate that the poikilocapnic hyperoxic hyperventilation is likely mediated via the interaction of the acidic brain interstitial fluid and an increase in central chemoreceptor sensitivity to CO2 , which, in turn, seems to be evoked by the excessive ROS production/accumulation.


Assuntos
Hiperóxia , Adulto , Dióxido de Carbono , Circulação Cerebrovascular , Humanos , Hiperventilação , Masculino , Oxigênio , Espécies Reativas de Oxigênio , Adulto Jovem
7.
Int J Paediatr Dent ; 31(4): 475-482, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32965763

RESUMO

AIM: This study determined the prevalence of molar-incisor hypomineralization (MIH) and its association with dental fluorosis and caries in children living in rural areas in north-eastern Brazil who are exposed to residual fluoride (F) levels in the drinking water. DESIGN: A census was carried out with 610 schoolchildren aged 6 to 12 years. The European Academy of Paediatric Dentistry criteria, Thysltrup and Fejerskov index, and World Health Organization index were used for diagnosis of MIH, dental fluorosis, and caries detection, respectively. The association between the outcome and exposure variables was determined by robust Poisson regression (P < .05). RESULTS: Water F-levels varied from 0.06 to 1.98 ppm. MIH was not related to fluoride levels in the drinking water, but it showed an inverse and direct correlation with dental caries and fluorosis, respectively. Children with MIH had a higher DMFT, and severe MIH cases were most frequent in children with dental fluorosis. CONCLUSION: Drinking water F-levels were not directly related to the occurrence of MIH in schoolchildren. The severity of MIH, however, was likely to be associated with dental fluorosis in areas with moderate to high fluoride levels in the drinking water.


Assuntos
Cárie Dentária , Hipoplasia do Esmalte Dentário , Água Potável , Fluorose Dentária , Brasil/epidemiologia , Criança , Estudos Transversais , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Hipoplasia do Esmalte Dentário/induzido quimicamente , Hipoplasia do Esmalte Dentário/epidemiologia , Fluoretos/efeitos adversos , Fluorose Dentária/epidemiologia , Humanos , Incisivo , Dente Molar , Prevalência
8.
J Physiol ; 598(16): 3343-3356, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32463117

RESUMO

KEY POINTS: ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in human cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia. Hypoxia-induced increases in the anterior circulation and total cerebral perfusion were attenuated under KATP channels blockade affecting the relative changes of brain oxygen delivery. Therefore, in humans, KATP channels activation modulates the vascular tone in the anterior circulation of the brain, contributing to CBF and CDO2 responses to hypoxia. ABSTRACT: ATP-sensitive K+ (KATP ) channels mediate hypoxia-induced cerebral vasodilatation and hyperperfusion in animals. We tested whether KATP channels blockade affects the increase in cerebral blood flow (CBF) and the maintenance of oxygen delivery (CDO2 ) during hypoxia in humans. Nine healthy men were exposed to 5-min trials of normoxia and isocapnic hypoxia (IHX, 10% O2 ) before (BGB) and 3 h after glibenclamide ingestion (AGB). Mean arterial pressure (MAP), arterial saturation ( SaO2 ), partial pressure of oxygen ( PaO2 ) and carbon dioxide ( PaCO2 ), internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF), total (t)CBF (Doppler ultrasound) and CDO2 were quantified during the trials. IHX provoked similar reductions in SaO2 and PaO2 , while MAP was not affected by oxygen desaturation or KATP blockade. A smaller increase in ICABF (ΔBGB: 36 ± 23 vs. ΔAGB 11 ± 18%, p = 0.019) but not in VABF (∆BGB 26 ± 21 vs. ∆AGB 27 ± 27%, p = 0.893) was observed during the hypoxic trial under KATP channels blockade. Thus, IHX-induced increases in tCBF (∆BGB 32 ± 19 vs. ∆AGB 14 ± 13%, p = 0.012) and CDO2 relative changes (∆BGB 7 ± 13 vs. ∆AGB -6 ± 14%, p = 0.048) were attenuated during the AGB hypoxic trial. In a separate protocol, 6 healthy men (5 from protocol 1) underwent a 5-min exposure to normoxia and IHX before and 3 h after placebo (5 mg of cornstarch) ingestion. IHX reduced SaO2 and PaO2 , but placebo did not affect the ICABF, VABF, tCBF, or CDO2 responses. Therefore, in humans, KATP channels activation modulates vascular tone in the anterior rather than the posterior circulation of the brain, contributing to tCBF and CDO2 responses to hypoxia.


Assuntos
Circulação Cerebrovascular , Hipóxia , Trifosfato de Adenosina , Animais , Hemodinâmica , Humanos , Masculino , Oxigênio
9.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R182-R187, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644318

RESUMO

Isocapnic hyperoxia (IH) evokes cerebral and peripheral hypoperfusion via both disturbance of redox homeostasis and reduction in nitric oxide (NO) bioavailability. However, it is not clear whether the magnitude of the vasomotor responses depends on the vessel network exposed to IH. To test the hypothesis that the magnitude of IH-induced reduction in peripheral blood flow (BF) may differ from the hypoperfusion response observed in the cerebral vascular network under oxygen-enriched conditions, nine healthy men (25 ± 3 yr, mean ± SD) underwent 10 min of IH during either saline or vitamin C (3 g) infusion, separately. Femoral artery (FA), internal carotid artery (ICA), and vertebral artery (VA) BF (Doppler ultrasound), as well as arterial oxidant (8-isoprostane), antioxidant [ascorbic acid (AA)], and NO bioavailability (nitrite) markers were simultaneously measured. IH increased 8-isoprostane levels and reduced nitrite levels; these responses were followed by a reduction in both FA BF and ICA BF, whereas VA BF did not change. Absolute and relative reductions in FA BF were greater than IH-induced changes in ICA and VA perfusion. Vitamin C infusion increased arterial AA levels and abolished the IH-induced increase in 8-isoprostane levels and reduction in nitrite levels. Whereas ICA and VA BF did not change during the vitamin C-IH trial, FA perfusion increased and reached similar levels to those observed during normoxia with saline infusion. Therefore, the magnitude of IH-induced reduction in femoral blood flow is greater than that observed in the vessel network of the brain, which might involve the determinant contribution that NO has in the regulation of peripheral vascular perfusion.


Assuntos
Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular/fisiologia , Cérebro/irrigação sanguínea , Hiperóxia , Sistema Vasomotor/fisiologia , Adulto , Hemodinâmica , Humanos , Masculino , Fluxo Sanguíneo Regional , Artéria Vertebral/fisiologia , Adulto Jovem
10.
Exerc Sport Sci Rev ; 48(2): 83-91, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32000180

RESUMO

The exercise pressor reflex (EPR) is engaged upon the activation of group III/IV skeletal muscle afferents and is one of the principal mediators of cardiovascular responses to exercise. This review explores the hypothesis that afferent signals from EPR communicate via GABAergic contacts within the brain stem to evoke parasympathetic withdrawal and sympathoexcitation to increase cardiac output, peripheral resistance, and blood pressure during exercise.


Assuntos
Vias Aferentes/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Exercício Físico/fisiologia , Neurônios GABAérgicos/fisiologia , Músculo Esquelético/inervação , Núcleo Solitário/fisiologia , Animais , Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Humanos , Sistema Nervoso Simpático/fisiologia , Resistência Vascular/fisiologia
11.
J Physiol ; 597(16): 4139-4150, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247674

RESUMO

KEY POINTS: The activation of the group III/IV skeletal muscle afferents is one of the principal mediators of cardiovascular responses to exercise; however, the neuronal circuitry mechanisms that are involved during the activation of group III/IV muscle afferents in humans remain unknown. Recently, we showed that GABAergic mechanisms are involved in the cardiac vagal withdrawal during the activation of mechanically sensitive (predominantly mediated by group III fibres) skeletal muscle afferents in humans. In the present study, we found that increases in muscle sympathetic nerve activity and mean blood pressure during isometric handgrip exercise and postexercise ischaemia were significantly greater after the oral administration of diazepam, a benzodiazepine that increases GABAA activity, but not after placebo administration in young healthy subjects. These findings indicate for the first time that GABAA receptors modulate sympathetic vasomotor outflow and the pressor responses to activation of metabolically sensitive (predominantly mediated by group IV fibres) skeletal muscle afferents in humans. ABSTRACT: Animal studies have indicated that GABAA receptors are involved in the neuronal circuitry of the group III/IV skeletal muscle afferent activation-induced neurocardiovascular responses to exercise. In the present study, we aimed to determine whether GABAA receptors modulate the neurocardiovascular responses to activation of metabolically sensitive (predominantly mediated by group IV fibres) skeletal muscle afferents in humans. In a randomized, double-blinded, placebo-controlled and cross-over design, 17 healthy subjects (eight women) performed 2 min of ischaemic isometric handgrip exercise at 30% of the maximal voluntary contraction followed by 2 min of postexercise ischaemia (PEI). Muscle sympathetic nerve activity (MSNA), blood pressure (BP) and heart rate (HR) were continuously measured and trials were conducted before and 60 min after the oral administration of either placebo or diazepam (10 mg), a benzodiazepine that enhances GABAA activity. At rest, MSNA was reduced, whereas HR and BP did not change after diazepam administration. During ischaemic isometric handgrip, greater MSNA (pre: ∆13 ± 9 bursts min-1 vs. post: ∆29 ± 15 bursts min-1 , P < 0.001), HR (pre: ∆23 ± 11 beats min-1 vs. post: ∆31 ± 17 beats min-1 , P < 0.01) and mean BP (pre: ∆33 ± 12 mmHg vs. post: ∆37 ± 12 mmHg, P < 0.01) responses were observed after diazepam. During PEI, MSNA and mean BP remained elevated from baseline before diazepam (∆10 ± 8 bursts min-1 and ∆25 ± 14 mmHg, respectively) and these elevations were increased after diazepam (∆17 ± 12 bursts min-1 and ∆28 ± 13 mmHg, respectively) (P ≤ 0.05). Importantly, placebo pill had no effect on neural, cardiac and pressor responses. These findings demonstrate for the first time that GABAA receptors modulate MSNA and the pressor responses to skeletal muscle metaboreflex activation in humans.


Assuntos
Pressão Sanguínea/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Receptores de GABA-A/metabolismo , Reflexo/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Diazepam/farmacologia , Feminino , Moduladores GABAérgicos/farmacologia , Humanos , Masculino , Sistema Nervoso Simpático/efeitos dos fármacos , Adulto Jovem
12.
J Physiol ; 597(3): 741-755, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506968

RESUMO

KEY POINTS: It is unknown whether excessive reactive oxygen species (ROS) production drives the isocapnic hyperoxia (IH)-induced decline in human cerebral blood flow (CBF) via reduced nitric oxide (NO) bioavailability and leads to disruption of the blood-brain barrier (BBB) or neural-parenchymal damage. Cerebral metabolic rate for oxygen (CMR O2 ) and transcerebral exchanges of NO end-products, oxidants, antioxidants and neural-parenchymal damage markers were simultaneously quantified under IH with intravenous saline and ascorbic acid infusion. CBF and CMRO2 were reduced during IH, responses that were followed by increased oxidative stress and reduced NO bioavailability when saline was infused. No indication of neural-parenchymal damage or disruption of the BBB was observed during IH. Antioxidant defences were increased during ascorbic acid infusion, while CBF, CMRO2 , oxidant and NO bioavailability markers remained unchanged. ROS play a role in the regulation of CBF and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage. ABSTRACT: To test the hypothesis that isocapnic hyperoxia (IH) affects cerebral blood flow (CBF) and metabolism through exaggerated reactive oxygen species (ROS) production, reduced nitric oxide (NO) bioavailability, disturbances in the blood-brain barrier (BBB) and neural-parenchymal homeostasis, 10 men (24 ± 1 years) were exposed to a 10 min IH trial (100% O2 ) while receiving intravenous saline and ascorbic acid (AA, 3 g) infusion. Internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF) and total CBF (tCBF, Doppler ultrasound) were determined. Arterial and right internal jugular venous blood was sampled to quantify the cerebral metabolic rate of oxygen (CMR O2 ), transcerebral exchanges (TCE) of NO end-products (plasma nitrite), antioxidants (AA and AA plus dehydroascorbic acid (AA+DA)) and oxidant biomarkers (thiobarbituric acid-reactive substances (TBARS) and 8-isoprostane), and an index of BBB disruption and neuronal-parenchymal damage (neuron-specific enolase; NSE). IH reduced ICABF, tCBF and CMRO2 , while VABF remained unchanged. Arterial 8-isoprostane and nitrite TCE increased, indicating that CBF decline was related to ROS production and reduced NO bioavailability. AA, AA+DA and NSE TCE did not change during IH. AA infusion did not change the resting haemodynamic and metabolic parameters but raised antioxidant defences, as indicated by increased AA/AA+DA concentrations. Negative AA+DA TCE, unchanged nitrite, reductions in arterial and venous 8-isoprostane, and TBARS TCE indicated that AA infusion effectively inhibited ROS production and preserved NO bioavailability. Similarly, AA infusion prevented IH-induced decline in regional and total CBF and re-established CMRO2 . These findings indicate that ROS play a role in CBF regulation and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage.


Assuntos
Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Hiperóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Antioxidantes/metabolismo , Disponibilidade Biológica , Biomarcadores/metabolismo , Humanos , Masculino , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Adulto Jovem
13.
Am J Physiol Heart Circ Physiol ; 317(2): H226-H233, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149841

RESUMO

Cardiac sympathetic overdrive provides inotropic support to the failing heart. However, as myocardial insult evolves, this compensatory response impairs contractile function and constitutes an independent mortality predictor and a primary target in the treatment of heart failure (HF). In this prospective, randomized, double-blind, controlled crossover trial, we proposed cervicothoracic transcutaneous electrical nerve stimulation (CTENS) as a nonpharmacological therapy on cardiac sympathetic activity in patients with HF. Seventeen patients with HF were randomly assigned to an in-home CTENS (30 min twice daily, 80-Hz frequency, and 150-µs pulse duration) or a control intervention (Sham) for 14 consecutive days. Following a 60-day washout phase, patients were crossed over to the opposite intervention. The heart-to-mediastinum ratio (HMR) and washout rate (WR) (indexes of sympathetic innervation density and activity from planar 123iodo-metaiodobenzylguanidine myocardial scintigraphy images, respectively), as well as blood pressure (BP) and heart rate (HR), were quantified before and after each intervention. HMR, BP, and HR did not change throughout the study. Nonetheless, CTENS reduced WR (CTENS -4 ± 10 vs. Sham +5 ± 15%, P = 0.03) when compared with Sham. When allocated in two independent groups, preserved (PCSI, HMR > 1.6, n = 10) and impaired cardiac sympathetic innervation (ICSI, HRM ≤1.6, n = 7), PCSI patients showed an important attenuation of WR (-11 ± 9 vs. Sham +8 ± 19%, P = 0.007) after CTENS. Nonetheless, neither Sham nor CTENS evoked changes in WR of the ICSI patients (P > 0.05). These findings indicate that CTENS attenuates the cardiac sympathetic overdrive in patients with HF and a preserved innervation constitutes an essential factor for this beneficial neuromodulatory impact. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Identifier: NCT03354689. NEW & NOTEWORTHY We found that short-term cervicothoracic transcutaneous electrical nerve stimulation (CTENS) attenuates cardiac sympathetic overdrive in patients with heart failure and a preserved autonomic innervation may constitute an essential factor to maximize this beneficial neuromodulatory effect. CTENS then emerges as an alternative noninvasive and nonpharmacological strategy to attenuate exaggerated cardiac sympathetic drive in patients with heart failure.


Assuntos
3-Iodobenzilguanidina/administração & dosagem , Insuficiência Cardíaca/terapia , Coração/inervação , Radioisótopos do Iodo/administração & dosagem , Contração Miocárdica , Compostos Radiofarmacêuticos/administração & dosagem , Sistema Nervoso Simpático/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea , Idoso , Pressão Sanguínea , Brasil , Estudos Cross-Over , Método Duplo-Cego , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema Nervoso Simpático/diagnóstico por imagem , Fatores de Tempo , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos , Resultado do Tratamento
14.
Am J Physiol Heart Circ Physiol ; 316(3): H734-H742, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592900

RESUMO

Peripheral venous distension mechanically stimulates type III/IV sensory fibers in veins and evokes pressor and sympathoexcitatory reflex responses in humans. As young women have reduced venous compliance and impaired sympathetic transduction, we tested the hypothesis that pressor and sympathoexcitatory responses to venous distension may be attenuated in women compared with men. Mean arterial pressure (photoplethysmography), heart rate (HR), stroke volume (SV; Modelflow), cardiac output (CO = HR × SV), muscle sympathetic nerve activity (MSNA), femoral artery blood flow, and femoral artery conductance (Doppler ultrasound) were quantified in eight men (27 ± 4 yr) and nine women (28 ± 4 yr) before [control (CON)], during (INF), and immediately after (post-INF) a local infusion of saline [5% of the total forearm volume (30 ml/min); the infusion time was 2 ± 1 and 1 ± 1 min ( P = 0.0001) for men and women, respectively] through a retrograde catheter inserted into an antecubital vein, to which venous drainage and arterial supply had been occluded. Mean arterial pressure increased during and after infusion in both groups (vs. the CON group, P < 0.05), but women showed a smaller pressor response in the post-INF period (Δ+7.2 ± 2.0 vs. Δ+18.3 ± 3.9 mmHg in men, P = 0.019). MSNA increased and femoral artery conductance decreased similarly in both groups (vs. the CON group, P < 0.05) at post-INF. Although HR changes were similar, increases in SV (Δ+20.4 ± 8.6 vs. Δ+2.6 ± 2.7 ml, P = 0.05) and CO (Δ+0.84 ± 0.17 vs. Δ+0.34 ± 0.10 l/min, P = 0.024) were greater in men compared with women. Therefore, venous distension evokes a smaller pressor response in young women due to attenuated cardiac adjustments rather than reduced venous compliance or sympathetic transduction. NEW & NOTEWORTHY We found that the pressor response to venous distension was attenuated in young women compared with age-matched men. This was due to attenuated cardiac adjustments rather than reduced venous compliance, sympathetic activation, or impaired transduction and vascular control. Collectively, these findings suggest that an attenuated venous distension reflex could be involved in orthostatic intolerance in young women.


Assuntos
Hemodinâmica/fisiologia , Músculo Liso Vascular/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Pressão Arterial/fisiologia , Feminino , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/fisiologia , Antebraço/irrigação sanguínea , Humanos , Hipotensão Ortostática/fisiopatologia , Masculino , Músculo Liso Vascular/inervação , Estimulação Física , Fluxo Sanguíneo Regional/fisiologia , Células Receptoras Sensoriais/fisiologia , Caracteres Sexuais , Resistência Vascular , Adulto Jovem
16.
J Physiol ; 596(7): 1167-1179, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462837

RESUMO

KEY POINTS: Hypoxaemia evokes a repertoire of homeostatic adjustments that maintain oxygen supply to organs and tissues including the brain and skeletal muscles. Because hypertensive patients have impaired endothelial-dependent vasodilatation and an increased sympathetic response to arterial oxygen desaturation, we investigated whether hypertension impairs isocapnic hypoxia-induced cerebral and skeletal muscle hyperaemia to an extent that limits oxygen supply. In middle-aged hypertensive men, vertebral and femoral artery blood flow do not increase in response to isocapnic hypoxia, limiting brain and peripheral hyperaemia and oxygen supply. Increased chemoreflex-induced sympathetic activation impairs skeletal muscle perfusion and oxygen supply, whereas an attenuation of local vasodilatory signalling in the posterior cerebrovasculature reduced brain hyperperfusion of hypertensive middle-aged men in response to isocapnic hypoxia. ABSTRACT: The present study investigated whether hypertension impairs isocapnic hypoxia (IH)-induced cerebral and skeletal muscle hyperaemia to an extent that limits oxygen supply. Oxygen saturation (oxymetry), mean arterial pressure (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneugraphy), as well as femoral artery (FA), internal carotid artery and vertebral artery (VA) blood flow (BF; Doppler ultrasound), were quantified in nine normotensive (NT) (aged 40 ± 11 years, systolic pressure 119 ± 7 mmHg and diastolic pressure 73 ± 6 mmHg) and nine hypertensive men (HT) (aged 44 ± 12 years, systolic pressure 152 ± 11 mmHg and diastolic pressure 90 ± 9 mmHg) during 5 min of normoxia (21% O2 ) and IH (10% O2 ). Total cerebral blood flow (tCBF), brain (CDO2 ) and leg (LDO2 ) oxygen delivery were estimated. IH provoked similar oxygen desaturation without changing mean arterial pressure. Internal carotid artery perfusion increased in both groups during IH. However, VA and FA BF only increased in NT. Thus, IH-induced increase in tCBF was smaller in HT. CDO2 only increased in NT and LDO2 decreased in HT. Furthermore, IH evoked a greater increase in HT MSNA. Changes in MSNA were inversely related to FA BF, LDO2 and end-tidal oxygen tension. In conclusion, hypertension disturbs regional and total cerebrovascular and peripheral responses to IH and consequently limits oxygen supply to the brain and skeletal muscle. Although increased chemoreflex-induced sympathetic activation may explain impaired peripheral perfusion, attenuated vasodilatory signalling in the posterior cerebrovasculature appears to be responsible for the small increase in tCBF when HT were exposed to IH.


Assuntos
Circulação Cerebrovascular , Hipertensão/etiologia , Hipóxia/fisiopatologia , Oxigênio/administração & dosagem , Fluxo Sanguíneo Regional , Vasodilatação , Adulto , Estudos de Casos e Controles , Feminino , Artéria Femoral/fisiopatologia , Hemodinâmica , Humanos , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Nervos Periféricos/fisiopatologia , Artéria Vertebral/fisiopatologia
17.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R820-R824, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949408

RESUMO

Endothelial dysfunction is observed in the peripheral vasculature of hypertensive patients, but it is unclear how the cerebral circulation is affected. More specifically, little is known about the impact of human hypertension on vertebral artery (VA) endothelial function. This study evaluated whether the endothelial function of the VA is impaired in hypertensive men. For 13 male hypertensive subjects (46 ± 3 yr) and eight age-matched male controls (46 ± 4 yr), blood pressure (BP; photoplethysmography), VA, and common carotid (CC) blood flow (duplex ultrasound) were determined at rest and during 30 min of intravenous l-arginine (30 g; a precursor of nitric oxide) or isotonic saline infusion. Controls and hypertensive subjects demonstrated a similar resting CC (601 ± 30 vs. controls 570 ± 43 ml/min; P = 0.529) and VA blood flow (119 ± 11 vs. controls 112 ± 9 ml/min; P = 0.878). During administration of l-arginine, CC blood flow increased similarly between groups (hypertensive 12 ± 3%, controls 13 ± 2%; P = 0.920). In contrast, the increase in VA blood flow was nonexistent in the hypertensive subjects (0.8 ± 3% vs. controls: 16 ± 4%; P = 0.015) with no significant change in BP. Both CC and VA flow returned to near-resting values within 30 min after the infusion, and for four hypertensive subjects and three controls, time-control experiments using 0.9% saline did not affect VA or CC blood flow significantly. The results demonstrate endothelial dysfunction in the posterior cerebral circulation of middle-aged hypertensive men.


Assuntos
Arginina/administração & dosagem , Circulação Cerebrovascular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hipertensão/fisiopatologia , Artéria Vertebral/efeitos dos fármacos , Adulto , Velocidade do Fluxo Sanguíneo , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/fisiopatologia , Estudos de Casos e Controles , Endotélio Vascular/fisiopatologia , Humanos , Hipertensão/diagnóstico , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional , Fatores de Tempo , Artéria Vertebral/fisiopatologia
18.
Exp Physiol ; 103(10): 1318-1325, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055008

RESUMO

NEW FINDINGS: What is the central question of this study? Water drinking increases muscle sympathetic nerve activity (MSNA), and it increases arterial blood pressure (ABP) in older populations but not in young healthy subjects. Does an increase in gain of arterial baroreflex control of MSNA contribute to maintenance of ABP after water drinking in healthy young subjects? What is the main finding and its importance? The gain of arterial baroreflex control of MSNA was increased and remained elevated 60 min after water drinking (500 ml) but remained unchanged after saline intake. An enhancement in gain of arterial baroreflex control of MSNA contributes to the maintenance of ABP after water drinking in young healthy subjects, probably via osmosensitive mechanisms. ABSTRACT: Water drinking increases muscle sympathetic nerve activity (MSNA), which is accompanied by a profound pressor response in patients with impaired arterial baroreflex function and in older populations, but not in healthy young subjects. We tested the hypothesis that an enhancement in the gain of arterial baroreflex control of MSNA contributes to the maintenance of arterial blood pressure after water drinking in healthy young subjects. The MSNA, arterial blood pressure and heart rate were measured in 10 healthy men (24 ± 2 years old; mean ± SD) before and for 60 min after ingestion of 500 ml of bottled water or saline solution. Weighted linear regression analysis between MSNA and diastolic blood pressure was used to determine the gain (i.e. sensitivity) of arterial baroreflex control of MSNA. After water drinking, MSNA was significantly elevated within 15 min and remained above baseline for up to 60 min [e.g. 21 ± 10 bursts (100 heart beats)-1  mmHg-1 at baseline versus 35 ± 14 bursts (100 heart beats)-1  mmHg-1 at 30 min; P < 0.01], whereas mean arterial blood pressure (e.g. 87 ± 7 mmHg at baseline versus 89 ± 7 mmHg at 30 min; P = 0.34) and heart rate were unchanged. The arterial baroreflex-MSNA gain for bursts incidence was increased and remained elevated throughout the protocol [e.g. -2.25 ± 0.99 bursts (100 heart beats)-1  mmHg-1 at baseline versus -4.32 ± 1.53 bursts (100 heart beats)-1  mmHg-1 at 30 min; P < 0.01]. Importantly, saline intake had no effect on arterial baroreflex-MSNA gain or any neurocardiovascular variables. These findings demonstrate that water drinking enhances the gain of arterial baroreflex control of MSNA in healthy young men, which may contribute to buffering the pressor response after water drinking, probably via osmosensitive mechanisms.


Assuntos
Artérias/fisiologia , Barorreflexo/fisiologia , Água Potável/administração & dosagem , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Pressão Arterial/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Fenômenos Fisiológicos Musculoesqueléticos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA