Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 78: 117132, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542960

RESUMO

Multitargeting ligands on enzymes and receptors may generate a profile for a potential treatment of cognitive impairment. Considering this, a set of 21 substituted aryl-alkyl-piperazines were designed, prepared and tested for their binding affinities at histamine H3 and dopamine D3 receptors (H3R and D3R, respectively) as well as acetyl- and butyrylcholinesterases (AChE/BChE) as potentially synergistic profile. Initial screening of the compounds at H3R and D3R was done at 1 or 10 µM and 100 µM at AChE and BChE assays. The most promising compounds were then evaluated in full concentration-response curves to estimate the Ki and IC50 values. Results showed that several compounds were ligands at H3R (n = 10), D3R (n = 6), AChE (n = 3), and BChE (n = 9). Compounds LINS05006 (Ki H3R 2.8 µM; D3R 0.7 µM; IC50 BChE 26.3 µM) and LINS05015 (Ki H3R 1.1 µM; D3R 3.1 µM; IC50 AChE 97.8 µM; BChE 43.7 µM) are highlighted since presented affinity in three different. These results suggest that methylpiperazine moiety led to balanced activity at all three classes of targets, and longer linker provided the best affinities. These compounds presented high ligand efficiency values (LE > 0.3) and may have adequate pharmacokinetic profile as suggested by calculated physicochemical properties.


Assuntos
Disfunção Cognitiva , Receptores Histamínicos H3 , Humanos , Histamina , Dopamina , Ligantes , Butirilcolinesterase/metabolismo , Receptores Histamínicos H3/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade
2.
Saudi Pharm J ; 31(7): 1265-1273, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37287509

RESUMO

The absence of effective chronic treatment, expansion to non-endemic countries and the significant burden in public health have stimulated the search for novel therapeutic options to treat Chagas disease, a protozoan disease caused by Trypanosoma cruzi. Despite current efforts, no new drug candidates were approved in clinical trials in the past five decades. Considering this, our group has focused on the expansion of a series (LINS03) with low micromolar activity against amastigotes, considering the optimization of pharmacokinetic properties through increasing drug-likeness and solubility. In this work, we report a new set of 13 compounds with modifications in both the arylpiperazine and the aromatic region linked by an amide group. Five analogues showed activity against intracellular amastigotes (IC50 17.8 to 35.9 µM) and no relevant cytotoxicity to mammalian cells (CC50 > 200 µM). Principal component analysis (PCA) was performed to identify structural features associated to improved activity. The data revealed that polarity, hydrogen bonding ability and flexibility were key properties that influenced the antiparasitic activity. In silico drug-likeness assessments indicated that compounds with the 4-methoxycinammyl (especially compound 2b) had the most prominent balance between properties and activity in the series, as confirmed by SAR analysis.

3.
Inflamm Res ; 71(7-8): 995-998, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35648157

RESUMO

In the light of cancellation of the 50th Annual Meeting of the European Histamine Research Society (EHRS) due to continuing challenges and restrictions imposed by the coronavirus disease 2019 (COVID-19) outbreak, the EHRS Council decided to organize a series of online events spread in 2021 to allow dissemination of histamine research progress and advancement among the Society members and beyond. This report summarizes the outcomes of the EHRS Council initiative that comprised the organization of four webinars, each focusing on a highly relevant histamine research scientific area. These included insights into novel therapeutic targets related to the histaminergic system in the eye, histamine intolerance, and the role of histamine and the histaminergic system in the regulation of the nervous system, as well as an update on studies leading to the development of novel methods for histamine detection. The outcome of this series of virtual events conformed that histamine research continued to develop despite the pandemic, and we witnessed stimulating advancements in 2021. Importantly, the EHRS Council brought histaminologists together in this unprecedented time.


Assuntos
COVID-19 , Pandemias , Histamina , Humanos
4.
Bioorg Med Chem ; 30: 115924, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333448

RESUMO

Histamine acts through four different receptors (H1R-H4R), the H3R and H4R being the most explored in the last years as drug targets. The H3R is a potential target to treat narcolepsy, Parkinson's disease, epilepsy, schizophrenia and several other CNS-related conditions, while H4R blockade leads to anti-inflammatory and immunomodulatory effects. Our group has been exploring the dihydrobenzofuranyl-piperazines (LINS01 series) as human H3R/H4R ligands as potential drug candidates. In the present study, a set of 12 compounds were synthesized from adequate (dihydro)benzofuran synthons through simple reactions with corresponding piperazines, giving moderate to high yields. Four compounds (1b, 1f, 1g and 1h) showed high hH3R affinity (pKi > 7), compound 1h being the most potent (pKi 8.4), and compound 1f showed the best efficiency (pKi 8.2, LE 0.53, LLE 5.85). BRET-based assays monitoring Gαi activity indicated that the compounds are potent antagonists. Only one compound (2c, pKi 7.1) presented high affinity for hH4R. In contrast to what was observed for hH3R, it showed partial agonist activity. Docking experiments indicated that bulky substituents occupy a hydrophobic pocket in hH3R, while the N-allyl group forms favorable interactions with hydrophobic residues in the TM2, 3 and 7, increasing the selectivity towards hH3R. Additionally, the importance of the indole NH in the interaction with Glu5.46 from hH4R was confirmed by the modeling results, explaining the affinity and agonistic activity of compound 2c. The data reported in this work represent important findings for the rational design of future compounds for hH3R and hH4R.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Piperazinas/farmacologia , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Antagonistas dos Receptores Histamínicos/síntese química , Antagonistas dos Receptores Histamínicos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Receptores Histamínicos H4/metabolismo , Relação Estrutura-Atividade
5.
Cell Physiol Biochem ; 54(6): 1163-1176, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33216475

RESUMO

BACKGROUND/AIMS: Histamine is an important chemical transmitter involved in inflammatory processes, including asthma and other chronic inflammatory diseases. Its inflammatory effects involve mainly the histamine H4 receptor (H4R), whose role in several studies has already been demonstrated. Our group have explored the effects of 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines as antagonists of H4R, and herein the compounds LINS01005 and LINS01007 were studied with more details, considering the different affinity profile on H4R and the anti-inflammatory potential of both compounds. METHODS: We carried out a more focused evaluation of the modulatory effects of LINS01005 and LINS01007 in a murine asthma model. The compounds were given i.p. (1-7 mg/kg) to ovalbumin sensitized BALB/c male mice (12 weeks old) 30 min before the antigen challenging, and after 24 h the cell analysis from the bronchoalveolar lavage fluid (BALF) was performed. The lung tissue was used for evaluation by western blot (COX-2, 5-LO, NF-κB and STAT3 expressions) and histological analysis. RESULTS: Treatment with the more potent H4R antagonist LINS01007 significantly decreased the total cell count and eosinophils in BALF at lower doses when compared to LINS01005. The expression of COX-2, 5-LO, NF-κB and STAT3 in lung tissue was significantly reduced after treatment with LINS01007. Morphophysiological changes such as mucus and collagen production and airway wall thickening were significantly reduced after treatment with LINS01007. CONCLUSION: These results show important down regulatory effect of novel H4R antagonist (LINS01007) on allergic lung inflammation.


Assuntos
Asma , Pulmão , Piperazinas/farmacologia , Receptores Histamínicos H4 , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piperazinas/química , Receptores Histamínicos H4/antagonistas & inibidores , Receptores Histamínicos H4/metabolismo , Índice de Gravidade de Doença
6.
Bioorg Chem ; 103: 104108, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32750608

RESUMO

p-Coumaric acid is a known inhibitor of tyrosinase, an enzyme involved in the initial steps of the melanin synthesis in human and other species. However, its low lipophilicity impairs its penetration through skin and efficacy as antimelanogenic agent indeed. Accordingly, this paper reports the assessment of several coumaric acid derivatives as tyrosinase inhibitors and antimelanogenic agents in in vitro, in silico and ex vivo assays. The compounds were designed with modifications in the aromatic and acid moieties of p-coumaric acid, being the coumarate esters the most promising derivatives. The compounds showed higher tyrosinase inhibitory activity (pIC50 3.7-4.2) than the parent acid, being compounds 1d, 1e and 1f the most potent inhibitors. Docking analysis showed that these esters are competitive inhibitors per se, and act independently of a redox mechanism as suggested by DPPH assays. Moreover, the esters showed efficacy in reducing the melanin deposition in human skin fragments at 0.1% concentration, especially compound 1e. In summary, there is an important equilibria between tyrosinase affinity and lipophilicity that must be considered to get effective antimelanogenic agents with adequate permeability in the skin.


Assuntos
Ácidos Cumáricos/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ácidos Cumáricos/síntese química , Ácidos Cumáricos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Melaninas/análise , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Chem ; 89: 102996, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132603

RESUMO

Chagas' disease is a parasitic infection caused by Trypanosoma cruzi that is still treated by old and toxic drugs. In the search for novel alternatives, natural sources are an important source for new drug prototypes against T. cruzi to further structural exploitation. A set of natural-based compounds (LINS03) was designed, showing promising antitrypanosoma activity and low cytotoxicity to host cells. In this paper, nine novel LINS03 derivatives were evaluated against T. cruzi trypomastigotes and amastigotes. The selectivity was assessed through cytotoxicity assays using NCTC mammalian cells and calculating the CC50/IC50 ratio. The results showed that compounds 2d and 4c are noteworthy, due their high activity against amastigotes (IC50 13.9 and 5.8 µM) and low cytotoxicity (CC50 107.7 µM and >200 µM, respectively). These compounds did not showed alteration on plasma membrane permeability in a Sytox green model. SAR analysis suggested an ideal balance between hydrosolubility and lipophilicity is necessary to improve the activity, and that insertion of a meta-substituent is detrimental to the activity of the amine derivatives but not to the neutral derivatives, suggesting different mechanisms of actions. The results presented herein are valuable for designing novel compounds with improved activity and selectivity to be applied in future studies.


Assuntos
Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
8.
Bioorg Med Chem Lett ; 26(4): 1180-3, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26821820

RESUMO

The essential oils from leaves of Piper malacophyllum (Piperaceae) showed to be mainly composed by two alkenylphenol derivatives: gibbilimbols A and B. After isolation and structural characterization by NMR and MS data analysis, both compounds were evaluated against promastigote/amastigote forms of Leishmania (L.) infantum as well as trypomastigote/amastigote forms of Trypanosoma cruzi. The obtained results indicated that gibbilimbol B displayed potential against the tested parasites and low toxicity to mammalian cells, stimulating the preparation of several quite simple synthetic analogues in order to improve its activity and to explore the preliminary structure-activity relationships (SAR) data. Among the prepared derivatives, compound LINS03003 (n-octyl-4-hydroxybenzylamine) displayed the most potent IC50 values of 5.5 and 1.8 µM against amastigotes of T. cruzi and L. (L.) infantum, respectively, indicating higher activity than the natural prototype. In addition, this compound showed remarkable selectivity index (SI) towards the intracellular forms of Leishmania (SI=13.1) and T. cruzi (SI=4.3). Therefore, this work indicated that preparation of synthetic compounds structurally based in the bioactive natural products could be an interesting source of novel and selective compounds against these protozoan parasites.


Assuntos
Antiprotozoários/síntese química , Fenóis/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Óleos Voláteis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Piperaceae/química , Piperaceae/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
9.
Int Immunopharmacol ; 133: 112128, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652966

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with growing incidence worldwide. Our group reported the compound 5-choro-1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01007) as H4R antagonist (pKi 6.2) and therefore the effects and pharmacological efficacy on a DSS-induced mice model of UC were assessed in this work. Experimental acute colitis was induced in male BALB/c mice (n = 5-10) by administering 3 % DSS in the drinking water for six days. The test compound LINS01007 was administered daily i.p. (5 mg/kg) and compared to control group without treatment. Body weight, water and food consumption, and the presence of fecal blood were monitored during 7-day treatment period. The levels of inflammatory markers (PGE2, COX-2, IL-6, NF-κB and STAT3) were also analyzed. Animals subjected to the acute colitis protocol showed a reduction in water and food intake from the fourth day (p < 0.05) and these events were prevented by LINS01007. Histological signs of edema, hyperplasia and disorganized intestinal crypts, as well as neutrophilic infiltrations, were found in control mice while these findings were significantly reduced in animals treated with LINS01007. Significant reductions in the levels of PGE2, COX-2, IL-6, NF-κB and STAT3 were observed in the serum and tissue of treated animals. The results demonstrated the significant effects of LINS01007 against DSS-induced colitis, highlighting the potential of H4R antagonism as promising treatment for this condition.


Assuntos
Benzofuranos , Sulfato de Dextrana , Piperazinas , Receptores Histamínicos H4 , Animais , Masculino , Camundongos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Benzofuranos/uso terapêutico , Benzofuranos/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Colo/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Interleucina-6/sangue , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Receptores Histamínicos H4/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores
10.
Life (Basel) ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983820

RESUMO

Chagas disease is an endemic tropical disease caused by the protozoan Trypanosoma cruzi, which affects around 7 million people worldwide, mostly in development countries. The treatment relies on only two available drugs, with severe adverse effects and a limited efficacy. Therefore, the search for new therapies is a legitimate need. Within this context, our group reported the anti-Trypanosoma cruzi activity of gibbilimbol B, a natural alkylphenol isolated from the plant Piper malacophyllum. Two synthetic derivatives, LINS03018 (1) and LINS03024 (2), demonstrated a higher antiparasitic potency and were selected for mechanism of action investigations. Our studies revealed no alterations in the plasma membrane potential, but a rapid alkalinization of the acidocalcisomes. Nevertheless, compound 1 exhibit a pronounced effect in the bioenergetics metabolism, with a mitochondrial impairment and consequent decrease in ATP and reactive oxygen species (ROS) levels. Compound 2 only depolarized the mitochondrial membrane potential, with no interferences in the respiratory chain. Additionally, no macrophages response of nitric oxide (NO) was observed in both compounds. Noteworthy, simple structure modifications in these derivatives induced significant differences in their lethal effects. Thus, this work reinforces the importance of the mechanism of action investigations at the early phases of drug discovery and support further developments of the series.

11.
ACS Omega ; 8(46): 44265-44275, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027351

RESUMO

Melanin is a substance that plays important roles in several organisms. Its function as an antioxidant and metal-complexing agent makes tyrosinase, the key enzyme that controls melanogenesis, an interesting target for designing inhibitors. In this article, we report a set of piperazine/piperidine amides of benzoic and cinnamic acid derivatives as tyrosinase inhibitors with improved potency and drug-likeness. The most potent compound 5b showed a pIC50 of 4.99 in the monophenolase assay, and only compound 3a showed reasonable potency in the diphenolase assay (pIC50, 4.18). These activities are not correlated to antiradical activity, suggesting that the activity is dependent on competition with the substrates. Molecular docking studies indicated that the benzyl substituent of 5b and other analogues perform important interactions in the enzyme that may explain the higher potency of these compounds. Moreover, the compounds present adequate lipophilicity and skin permeability and no relevant cytotoxicity (CC50 > 200 µM) to mammalian cells.

12.
Biochimie ; 208: 141-150, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36586562

RESUMO

Natural metabolites present an extraordinary chemo-diversity and have been used as the inspiration for new drugs. Considering the need for new treatments against the neglected parasitic disease leishmaniasis, three semi-synthetic derivatives of natural neolignane licarin A were prepared: O-acetyl (1a), O-allyl (1b), and 5-allyl (1c). Using an ex vivo assay, compounds 1a, 1b, and 1c showed activity against the intracellular amastigotes of Leishmania (L.) infantum, with IC50 values of 9, 13, and 10 µM, respectively. Despite no induction of hemolytic activity, only compound 1b resulted in mammalian cytotoxicity (CC50 = 64 µM). The most potent compounds (1a and 1c) resulted in selectivity indexes >18. The mechanism of action of compound 1c was evaluated by fluorescent/luminescent based techniques and MALDI-TOF/MS. After a short incubation period, increased levels of the cytosolic calcium were observed in the parasites, with alkalinization of the acidocalcisomes. Compound 1c also induced mitochondrial hyperpolarization, resulting in decreased levels of ATP without altering the reactive oxygen species (ROS). Neither plasma membrane damages nor DNA fragmentation were observed after the treatment, but a reduction in the cellular proliferation was detected. Using MALDI-TOF/MS, mass spectral alterations of promastigote proteins were observed when compared to untreated and miltefosine-treated groups. This chemically modified neolignan induced lethal alterations of the bioenergetic and protein metabolism of Leishmania. Future PKPD and animal efficacy studies are needed to optimize this promising natural-derived compound.


Assuntos
Antiprotozoários , Leishmania infantum , Animais , Camundongos , Antiprotozoários/farmacologia , Cálcio/metabolismo , Leishmania infantum/metabolismo , Metabolismo Energético , Camundongos Endogâmicos BALB C , Mamíferos/metabolismo
13.
Eur J Med Chem ; 251: 115268, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921525

RESUMO

Infections caused by parasitic helminths rank among the most prevalent infections of humans and animals. Toxocariasis, caused by nematodes of the genus Toxocara, is one of the most widespread and economically important zoonotic parasitic infections that humans share with dogs and cats. Despite the completion of the Toxocara canis draft genome project, which has been an important step towards advancing the understanding of this parasite and the search for drug targets, the treatment of toxocariasis has been dependent on a limited set of drugs, necessitating the search for novel anthelmintic agents, specially against Toxocara larvae in tissues. Given that research, development, and innovation are crucial to finding appropriate solutions in the fight against helminthiasis, this paper reviews the progress made in the discovery of anthelmintic drug candidates for toxocariasis. The main compounds reported in the recent years regards on analogues of albendazole, reactive quinone derivatives and natural produts and its analogues. Nanoparticles and formulations were also reviewed. The in vitro and/or in vivo anthelmintic properties of such alternatives are herein discussed as well as the opportunities and challenges for treatment of human toxocariasis. The performed review clarify that the scarcity of validated molecular targets and limited chemical space explored are the main bottlenecks for advancing in the field of anti-Toxocara agents.


Assuntos
Anti-Helmínticos , Doenças do Gato , Doenças do Cão , Toxocaríase , Animais , Humanos , Gatos , Cães , Toxocaríase/tratamento farmacológico , Toxocaríase/parasitologia , Doenças do Gato/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Albendazol/uso terapêutico , Toxocara
14.
Biomedicines ; 11(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672704

RESUMO

Previous studies reported that p-coumaric acid modulates melanoma growth. Because the esterification of p-coumaric acid (p-CA) enhanced its activity as an antimelanogenic agent, we aimed to determine the antitumor potential of two derivatives, the ethyl and butyl esters, against the murine B16-F10 and the human SK-MEL-25 melanoma cells. Cell viability was determined in vitro by the lactate dehydrogenase release and violet crystal absorption assays. The cell proliferation rate and cell cycle behavior were determined by the colony formation assay and flow cytometry analysis. Although p-CA, at the concentration of 1 mM, failed to exert a significant antitumor activity, the ethyl and butyl ester derivatives caused substantial tumor cell death at doses < 1 mM. Despite a reduction in their direct cytotoxicity at minor doses, both products controlled the melanoma growth by arresting the cell cycle at the G0/G1 (B16-F10) or S/G2 (SK-MEL-25). Furthermore, the in vivo experiments showed that the butyl ester derivative suppressed the lung B16-F10 burden, compared to the p-CA-treated mice. Thus, the esterification of p-coumaric acid improved the control over the proliferation of murine and human melanoma cells and can be considered an approach for designing novel anticancer agents.

15.
Eur J Pharm Sci ; 171: 106114, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986415

RESUMO

Trypanosoma cruzi is the causing agent of Chagas disease, a parasitic infection without efficient treatment for chronic patients. Despite the efforts, no new drugs have been approved for this disease in the last 60 years. Molecular modifications based on a natural product led to the development of a series of compounds (LINS03 series) with promising antitrypanosomal activity, however previous chemometric analysis revealed a significant impact of excessive lipophilicity and low aqueous solubility on potency of amine and amide derivatives. Therefore, this work reports different modifications in the core structure to achieve adequate balance of the physicochemical properties along with biological activity. A set of 34 analogues were designed considering predicted properties related to lipophilicity/hydrosolubility and synthesized to assess their activity and selective toxicity towards the parasite. Results showed that this strategy contributed to improve the drug-likeness of the series while considerable impacts on potency were observed. The rational analysis of the obtained data led to the identification of seven active piperazine amides (28-34, IC50 8.7 to 35.3 µM against intracellular amastigotes), devoid of significant cytotoxicity to mammalian cells. The addition of water-solubilizing groups and privileged substructures such as piperazines improved the physicochemical properties and overall drug-likeness of these compounds, increased potency and maintained selectivity towards the parasite. The obtained results brought important structure-activity relationship (SAR) data and new lead structures for further modifications were identified to achieve improved antitrypanosoma compounds.


Assuntos
Preparações Farmacêuticas , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia
16.
Chem Biol Drug Des ; 99(3): 391-397, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873847

RESUMO

Considering the emergence of antifungal resistance on Sporothrix brasiliensis, we aimed to assess new benzylidene-carbonyl compounds against feline-borne S. brasiliensis isolates. The compounds were designed as bioisosteres from previously reported benzylidene-ketones generating the p-coumaric (1), cinnamic (2), p-methoxycinnamic (3) and caffeic acid (4) analogues. The corresponding compounds were tested against feline isolates of S. brasiliensis with sensitivity (n = 4) and resistance (n = 5) to itraconazole (ITZ), following the M38-A2 protocol (CLSI, Reference method for broth dilution antifungal susceptibility testing of filamentous fungi M38-A2 Guideline, 2008). Eleven analogues showed activity against all fungal strains with minimum inhibitory concentrations (MIC) ≤1 mg/ml (1a-d, 2e, 3b, 3e, 4, 4a and 5e) and fungicidal concentrations (MFC) ≤1 mg/ml (1b, 1d, 3e and 4a), whereas 3 was the less active with both MIC and MFC values above 1 mg/ml. Compound 3e (4-methoxy-N-butylcinnamamide) was the most potent (MICrange 0.08-0.16 mg/ml; MFCrange 0.32-0.64 mg/ml) from the set, suggesting a different role of the substituents in ester and amide derivatives. The designed compounds proved to be important prototypes with improved drug-likeness to achieve compounds with higher activity against ITZ-resistant S. brasiliensis.


Assuntos
Antifúngicos/farmacologia , Compostos de Benzilideno/química , Cetonas/química , Sporothrix/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Itraconazol/síntese química , Itraconazol/química , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
17.
Neurotox Res ; 40(6): 1653-1663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342586

RESUMO

Excessive levels of dopamine in the synaptic cleft, induced by cocaine for example, activates dopaminergic receptors, mainly D1R, D2R, and D3R subtypes, contributing to neurotoxic effects. New synthetic 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine derivatives (the LINS01 compounds), designed as histaminergic receptor (H3R) ligands, are also dopaminergic receptor ligands, mainly D2R and D3R. This study aims to evaluate the neurotoxicity of these new synthetic LINS01 compounds (LINS01003, LINS01004, LINS01011, and LINS01018), as well as to investigate their protective potential on a cocaine model of dopamine-induced neurotoxicity using SH-SY5Y cell line culture. Neurotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and automated cell counting with fluorescent dyes (acridyl orange and propidium iodide) assays. Concentration-response curves (CRCs) were performed for all LINS compounds and cocaine using MTT assay. The results show that LINS series did not decrease cell viability after 48h of exposure-except for 100 µM LINS01018, which was discontinued from the study. Likewise, MTT, LDH, and fluorescent dyes staining showed no difference is cell viability for LINS compounds at 10 µM. When incubated with 2.5 mM cocaine (lethal concentration 50) for 48h, 10 µM of each LINS compound, metoclopramide (D2R antagonist) and haloperidol (D2R/D3R antagonist), ameliorated cocaine-induced neurotoxicity. However, only metoclopramide, haloperidol, and LINS01011 compound significantly decreased LDH released in the culture medium, suggesting that this new synthetic compound presents a more robust effect. This preliminary in vitro neurotoxicity study suggests that LINS01 compounds are not neurotoxic, and that they play a promising role in preventing cocaine-induced neurotoxicity.


Assuntos
Cocaína , Neuroblastoma , Humanos , Cocaína/toxicidade , Dopamina , Haloperidol/farmacologia , Metoclopramida , Piperazina , Corantes Fluorescentes , Técnicas de Cultura de Células
18.
Chem Biol Drug Des ; 100(5): 722-729, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36050829

RESUMO

Histamine is involved in several central nervous system processes including cognition. In the last years, H3 receptor (H3 R) antagonists have been widely explored for their potential on dementias and other cognitive dysfunctions, and the cooperative role between histamine and acetylcholine neurotransmissions on cognitive processes is widely known in literature. This motivated us to assess the potential of 1-[(2,3-dihydrobenzofuran-1-yl)methyl]piperazines (LINS01 compounds) as inhibitors of cholinesterases, and thus this work presents the inhibitory effect of such compounds against acetyl (AChE) and butyrylcholinesterase. A set of 16 selected compounds were evaluated, being compounds 2d and 2e the most potent inhibitors of both cholinesterases (IC50 13.2-33.9 µM) by competitive mechanism, as indicated by the kinetic assays. Molecular docking simulations suggested that the allylpiperazine and dihydrobenzofuran motifs present in these compounds are important to perform π-interactions with key tryptophan residues from the enzymes, increasing their affinity for both H3 R and cholinesterases. Metric analysis support that compound 2d (LINS01022) should be highlighted due to its balanced lipophilicity (ClogP 2.35) and efficiency (LE 0.32) as AChE inhibitor. The results add important information to future design of dual H3 R-cholinesterases ligands.


Assuntos
Doença de Alzheimer , Receptores Histamínicos H3 , Acetilcolina , Acetilcolinesterase/metabolismo , Benzofuranos/química , Benzofuranos/farmacologia , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Histamina , Antagonistas dos Receptores Histamínicos/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Piperazinas/química , Piperazinas/farmacologia , Receptores Histamínicos H3/química , Relação Estrutura-Atividade , Triptofano
19.
Chem Biol Drug Des ; 98(2): 212-225, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991182

RESUMO

The role of histamine and acetylcholine in cognitive functions suggests that compounds able to increase both histaminergic and cholinergic neurotransmissions in the brain should be considered as promising therapeutic options. For this purpose, dual inhibitors of histamine H3 receptors (H3 R) and cholinesterases (ChEs) have been designed and assessed. In this context, this paper reviews the strategies used to obtain dual H3 R/ChEs ligands using multitarget design approaches. Hybrid compounds designed by linking tacrine or flavonoid motifs to H3 R antagonists were obtained with high affinity for both targets, and compounds designed by merging the H3 R antagonist pharmacophore with known anticholinesterase molecules were also reported. These reports strongly suggest that key modifications in the lipophilic region (including a second basic group) seem to be a strategy to reach novel compounds, allied with longer linker groups to a basic region. Some compounds have already demonstrated efficacy in memory models, although the pharmacokinetic and toxicity profile should be considered when designing further compounds. In conclusion, the key features to be considered when designing novel H3 R/ChEs inhibitors with improved pharmacological profile were herein summarized.


Assuntos
Colinesterases/química , Ligantes , Receptores Histamínicos H3/química , Sítios de Ligação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Colinesterases/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Desenho de Fármacos , Antagonistas dos Receptores Histamínicos/química , Antagonistas dos Receptores Histamínicos/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Receptores Histamínicos H3/metabolismo
20.
PLoS One ; 16(2): e0247334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630860

RESUMO

EtOH extracts from the leaves and twigs of Nectandra oppositifolia Nees & Mart. shown activity against amastigote forms of Trypanosoma cruzi. These extracts were subjected to successive liquid-liquid partitioning to afford bioactive CH2Cl2 fractions. UHPLC-TOF-HRMS/MS and molecular networking were used to obtain an overview of the phytochemical composition of these active fractions. Aiming to isolate the active compounds, both CH2Cl2 fractions were subjected to fractionation using medium pressure chromatography combined with semi-preparative HPLC-UV. Using this approach, twelve compounds (1-12) were isolated and identified by NMR and HRMS analysis. Several isolated compounds displayed activity against the amastigote forms of T. cruzi, especially ethyl protocatechuate (7) with EC50 value of 18.1 µM, similar to positive control benznidazole (18.7 µM). Considering the potential of compound 7, protocatechuic acid and its respective methyl (7a), n-propyl (7b), n-butyl (7c), n-pentyl (7d), and n-hexyl (7e) esters were tested. Regarding antitrypanosomal activity, protocatechuic acid and compound 7a were inactive, while 7b-7e exhibited EC50 values from 20.4 to 11.7 µM, without cytotoxicity to mammalian cells. These results suggest that lipophilicity and molecular complexity play an important role in the activity while efficiency analysis indicates that the natural compound 7 is a promising prototype for further modifications to obtain compounds effective against the intracellular forms of T. cruzi.


Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Lauraceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Doença de Chagas/parasitologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA