RESUMO
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor ß (TGF-ß) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP60-114, remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP60-114 had no impact on activity. The specific activity of the GDF11/PDP60-114 complex (EC50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC50 = 2 nM) by protease treatment. Complex formation with PDP60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-ß family that form latent pro/mature domain complexes.
Assuntos
Proteínas Morfogenéticas Ósseas , Fatores de Diferenciação de Crescimento , Multimerização Proteica , Proteólise , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/genética , Células CHO , Cricetinae , Cricetulus , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/química , Fatores de Diferenciação de Crescimento/genética , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Domínios Proteicos , SolubilidadeRESUMO
Characterization of biopharmaceutical proteins and assessment and understanding of the critical quality attributes (CQAs) is a significant part of biopharmaceutical product development and is routinely performed in vitro. In contrast, systematic analysis of the quality attributes in vivo is not as widespread, although metabolism and clearance of multiple variants of therapeutic proteins administered to non-human primates and human subjects may have a different impact on safety, efficacy and exposure. The major hurdles of such studies are usually sample availability and technical capability. In this study, we used affinity purification coupled with liquid chromatography and mass spectrometric analysis of the digested protein for consistent and simultaneous detection of the full amino acid sequence of a therapeutic IgG4 monoclonal antibody, MAB1. This methodology allowed us to assess in vivo changes of all sequence-related modifications and quality attributes of MAB1 over the duration of a preclinical pharmacokinetic study in cynomolgus monkeys.
Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Imunoglobulina G/metabolismo , Animais , Macaca fascicularis , Modelos Animais , Mapeamento de PeptídeosRESUMO
The alpha1beta1 (VLA-1) integrin is a cell-surface receptor for collagen and laminin and has been implicated in biological pathways involved in several pathological processes. These processes may be inhibited by the monoclonal antibody AQC2, which binds with high affinity to human alpha1beta1 integrin. To understand the structural basis of the inhibition we determined the crystal structure of the complex of a chimeric rat/human I domain of the alpha1beta1 integrin and the Fab fragment of humanized AQC2 antibody. The structure of the complex shows that the antibody blocks the collagen binding site of the I domain. An aspartate residue, from the CDR3 loop of the antibody heavy chain, coordinates the MIDAS metal ion in a manner similar to that of a glutamate residue from collagen. Substitution of the aspartate residue by alanine or arginine results in significant reduction of antibody binding affinity. Interestingly, although the mode of metal ion coordination resembles that of the open conformation, the I domain maintains an overall closed conformation previously observed only for unliganded I domains.
Assuntos
Integrina alfa1beta1/química , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas , Mutagênese , Conformação Proteica , Proteínas Recombinantes de Fusão/químicaRESUMO
The cell surface co-stimulatory protein CD154 (CD40L) is a target for monoclonal antibody (mAb) inhibitors of T-cell mediated immune diseases. This protein, like most other members of the TNF ligand family, forms homotrimeric complexes on the cell surface and in solution, with a three-fold axis of symmetry. We find that several different anti-CD154 monoclonal antibodies form distinctive complexes with soluble CD154. These soluble complexes have been analyzed using size exclusion chromatography, static and dynamic light scattering, and electron microscopy and shown to consist of caged structures of various geometries. The cell surface complexes have been analyzed by confocal microscopy and, depending on the mAb, remain as small, separate complexes or form large aggregates. The formation of these complexes in solution is likely to have an impact on measures of affinity, while the cell surface complexes could affect binding potency and provoke other biological effects.
Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Ligante de CD40/química , Humanos , Células Jurkat , Microscopia EletrônicaRESUMO
INTRODUCTION: CD40 ligand (CD40L) blockade has demonstrated efficacy in experimental autoimmune models. However, clinical trials of hu5c8, an anti-human CD40L IgG1 antibody, in systemic lupus erythematosus (SLE) were halted due to an increased incidence of thrombotic events. This study evaluated CDP7657, a high affinity PEGylated monovalent Fab' anti-CD40L antibody fragment, to assess whether an Fc-deficient molecule retains efficacy while avoiding the increased risk of thrombotic events observed with hu5c8. METHODS: The potency and cross-reactivity of CDP7657 was assessed in in vitro assays employing human and non-human primate leukocytes, and the capacity of different antibody formats to activate platelets in vitro was assessed using aggregometry and dense granule release assays. Given the important role CD40L plays in regulating humoral immunity, in vivo efficacy was assessed by investigating the capacity of Cynomolgus monkeys to generate immune responses to the tetanus toxoid antigen while the potential to induce thrombotic events in vivo was evaluated after repeat dosing of antibodies to Rhesus monkeys. A PEGylated anti-mouse CD40L was generated to assess efficacy in the New Zealand Black/White (NZB/W) mouse model of SLE. RESULTS: CDP7657 dose-dependently inhibited antigen-specific immune responses to tetanus toxoid in Cynomolgus monkeys, and in contrast to hu5c8, there was no evidence of pulmonary thrombovasculopathy in Rhesus monkeys. Aglycosyl hu5c8, which lacks Fc receptor binding function, also failed to induce thrombotic events in Rhesus monkeys. In vitro experiments confirmed that antibody constructs lacking an Fc, including CDP7657, did not induce human or monkey platelet activation. A PEGylated monovalent Fab' anti-mouse CD40L antibody also inhibited disease activity in the NZB/W mouse model of SLE after administration using a therapeutic dosing regimen where mice received antibodies only after they had displayed severe proteinuria. CONCLUSIONS: These findings demonstrate for the first time that anti-CD40L antibodies lacking a functional Fc region do not induce thrombotic events in Rhesus monkeys and fail to activate platelets in vitro but, nevertheless retain pharmacological activity and support the investigation of CDP7657 as a potential therapy for systemic lupus erythematosus and other autoimmune diseases.
Assuntos
Anticorpos Monoclonais/imunologia , Ligante de CD40/imunologia , Imunidade Humoral/imunologia , Trombose/imunologia , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Formação de Anticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Humanos , Imunidade Humoral/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Macaca fascicularis , Macaca mulatta , Camundongos Endogâmicos NZB , Polietilenoglicóis/química , Toxoide Tetânico/imunologia , Trombose/induzido quimicamenteRESUMO
It has been demonstrated that anti-CD154 mAb treatment effectively inhibits the development of experimental autoimmune encephalomyelitis (EAE). However, although it appears to prevent the induction of Th1 cells and reactivation of encephalitogenic T cells within the CNS, little information is available regarding the involvement of alternative mechanisms, nor has the contribution of Fc effector mechanisms in this context been addressed. By contrast, efficacy of anti-CD154 mAbs in models of allotransplantation has been reported to involve long-term unresponsiveness, potentially via activation of T regulatory cells, and recently was reported to depend on Fc-dependent functions, such as activated T cell depletion through FcgammaR or complement. In this study we demonstrate that anti-CD154 mAb treatment inhibits EAE development in SJL mice without apparent long-term unresponsiveness or active suppression of disease. To address whether the mechanism of inhibition of EAE by anti-CD154 mAb depends on its Fc effector interactions, we compared an anti-CD154 mAb with its aglycosyl counterpart with severely impaired FcgammaR binding and reduced complement binding activity with regard to their ability to inhibit clinical signs of EAE and report that both forms of the Ab are similarly protective. This observation was largely confirmed by the extent of leukocyte infiltration of the CNS; however, mice treated with the aglycosyl form may display slightly more proteolipid protein 139-151-specific immune reactivity. It is concluded that FcR interactions do not play a major role in the protective effect of anti-CD154 mAb in the context of EAE, though they may contribute to the full abrogation of peripheral peptide-specific lymphocyte responses.
Assuntos
Anticorpos Monoclonais/imunologia , Ligante de CD40/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptores Fc/metabolismo , Animais , Linfócitos B/imunologia , Feminino , Glicosilação , Camundongos , Proteína Proteolipídica de Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Receptores Fc/imunologia , Linfócitos T/imunologiaRESUMO
The integrin alpha1beta1 (very late antigen-1; CD49a/CD29) is a major adhesion receptor for collagen I, IV, and VI, and its induced expression on activated monocytes and lymphocytes plays a central role in their retention and activation at inflammatory sites in autoimmune pathologies. However, the role of alpha1beta1 in allergic settings has not been explored. In this study, we show that a single 45-mg dose of aerosolized monoclonal antibody AQC2 to the alpha1 chain of human and sheep very late antigen-1, given 30 minutes before challenge, blocks both the allergen-induced late response and the associated airway hyperresponsiveness, functional indicators of allergen-induced inflammation, in sheep. AQC2 does not affect the early response. Consistent with these effects, AQC2 tended to reduce the cell response associated with local antigen instillation. An isotype-matched control antibody had no protective effects. Two humanized versions of AQC2, a wild-type IgG1 and an aglycosyl form of the same monoclonal antibody, which has reduced Fc receptor-mediated effector functions, are equally effective in blocking the antigen-induced late response and airway hyperresponsiveness in the sheep model. These data suggest that mononuclear leukocyte adhesion-dependent pathologies contribute to allergic lung disease and provide proof-of-concept that antagonists of alpha1 integrins may be useful in preventing these events.
Assuntos
Anticorpos Monoclonais/farmacologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/prevenção & controle , Integrinas/antagonistas & inibidores , Receptores de Antígeno muito Tardio/imunologia , Administração por Inalação , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Testes de Provocação Brônquica , Modelos Animais de Doenças , Feminino , Integrinas/fisiologia , Masculino , Probabilidade , Valores de Referência , Sensibilidade e Especificidade , Carneiro DomésticoRESUMO
Blockade of the CD154-CD40 co-stimulatory pathway with anti-CD154 mAbs has shown impressive efficacy in models of autoimmunity and allotransplantation. Clinical benefit was also demonstrated in systemic lupus erythematosus (SLE) and idiopathic thrombocytopenia patients with the humanized anti-CD154 mAb, 5C8 (hu5C8). However, thromboembolic complications that occurred during the course of the hu5C8 clinical trials have proven to be a major setback to the field and safe alternative therapeutics targeting the CD154-CD40 pathway are of great interest. Recently, effector mechanisms have been shown to play a part in anti-CD154 mAb-induced transplant acceptance in murine models, while this issue remains unresolved for humoral-mediated models. Herein, aglycosyl anti-CD154 mAbs with reduced binding to FcgammaR and complement were used as a novel means to test the role of effector mechanisms in non-human primate and murine models not amenable to gene knockout technology. While aglycosyl hu5C8 mAb was relatively ineffective in rhesus renal and islet allotransplantation, it inhibited primary and secondary humoral responses to a protein immunogen in cynomolgus monkeys. Moreover, an aglycosyl, chimeric MR1 mAb (muMR1) prolonged survival and inhibited pathogenic auto-antibody production in a murine model of SLE. Thus, the mechanisms required for efficacy of anti-CD154 mAbs depend on the nature of the immune challenge.