Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 74(24): 4561-4572, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28726057

RESUMO

Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Células HEK293 , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia
2.
J Neurosci Res ; 93(2): 285-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25327365

RESUMO

The γ-aminobutyric acid (GABA) type B receptor has been implicated in glial cell development in the peripheral nervous system (PNS), although the exact function of GABA signaling is not known. To investigate GABA and its B receptor in PNS development and degeneration, we studied the expression of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury.


Assuntos
Bainha de Mielina/metabolismo , Nós Neurofibrosos/metabolismo , Receptores de GABA-B/metabolismo , Nervo Isquiático , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Embrião de Mamíferos , GABAérgicos/farmacologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/genética , Nervo Isquiático/citologia , Nervo Isquiático/embriologia , Nervo Isquiático/crescimento & desenvolvimento , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia
3.
J Neurol Sci ; 457: 122888, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278096

RESUMO

BACKGROUND: Predictive and prognostic biomarkers for multiple sclerosis (MS) remain a significant gap in MS diagnosis and treatment monitoring. Currently, there are no timely markers to diagnose the transition to secondary progressive MS (SPMS). OBJECTIVE: This study aims to evaluate the discriminatory potential of the High temperature requirement serine protease (HTRA1)/Macrophage migration inhibitory factor (MIF) cerebrospinal fluid (CSF) ratio in distinguishing relapsing-remitting (RRMS) patients from SPMS patients. METHODS: The MIF and HTRA1 CSF levels were determined using ELISA in healthy controls (n = 23), RRMS patients before (n = 22) and after 1 year of dimethyl fumarate treatment (n = 11), as well as in SPMS patients before (n = 11) and after 2 years of mitoxantrone treatment (n = 7). The ability of the HTRA1/MIF ratio to discriminate the different groups was determined using receiver operating curve (ROC) analyses. RESULTS: The ratio was significantly increased in treatment naïve RRMS patients while decreased again in SPMS patients at baseline. Systemic administrated disease modifying treatment (DMT) only significantly affected the ratio in RRMS patients. ROC analysis demonstrated that the ratio could discriminate treatment naïve RRMS patients from SPMS patients with 91% sensitivity and 100% specificity. CONCLUSION: The HTRA1/MIF ratio is a strong candidate as a MS biomarker for SPMS conversion.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Temperatura
4.
Life (Basel) ; 14(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38792565

RESUMO

Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development in rats subjected to focal TBI was investigated to explore the potential roles of collagen IV and laminin within the extracellular matrix (ECM) of selected hindlimb muscles in the emergence of motor deficits following TBI. A focal TBI was induced by ablating the left sensorimotor cortex in rats and motor deficits were assessed by measuring HL-PA. The expression of laminin and collagen IV in eight selected muscles on each side of the hindlimbs from both TBI- and sham-operated rats were studied using immunohistochemistry and semi-quantitatively analyzed. The results indicated that the TBI rats exhibited HL-PA, characterized by flexion of the contralateral (right) hindlimb. In the sham-operated rats, the immunoreactive components of laminin and collagen IV were evenly and smoothly distributed along the border of the muscle fibers in all the investigated muscles. In contrast, in the TBI rats, the pattern was broken into aggregated, granule-like, immunoreactive components. Such a labeling pattern was detected in all the investigated muscles both from the contra- and ipsilateral sides of the TBI rats. However, in TBI rats, most of the muscles from the contralateral hindlimb showed a significantly increased expression of these two proteins in comparison with those from the ipsilateral hindlimb. In comparison to sham-operated rats, there was a significant increase in laminin and collagen IV expression in various contralateral hindlimb muscles in the TBI rats. These findings suggest potential implications of laminin and collagen IV in the development of motor deficits following a focal TBI.

5.
Stem Cell Res ; 65: 102961, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36402078

RESUMO

Induced pluripotent stem (iPS) cell lines have wide valuable applications in experimental research, including developmental, pathological, and drug screening studies. Using integration-free episomal plasmids, we have generated a new iPS cell line from a 26-year-old healthy male donor. Characterization of the established cell line confirmed the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.


Assuntos
Linhagem Celular , Masculino , Humanos , Adulto
6.
J Neurol Sci ; 439: 120320, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717879

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is involved in the function of both the innate and adaptive immune systems and in neuroprotection and has recently been implicated in multiple sclerosis (MS). OBJECTIVES: Determination of MIF levels in the cerebrospinal fluid (CSF) of patients with distinct subtypes of MS and the cellular localization of MIF in human brain tissue. METHODS: The levels of MIF were investigated in CSF from patients with clinically isolated syndrome (CIS) (n = 26), relapsing-remitting MS (RRMS) (n = 22), secondary progressive MS (SPMS) (n = 19), and healthy controls (HCs) (n = 24), using ELISA. The effect of disease-modifying therapies in the RRMS and SPMS cohorts were examined. Cellular distribution of MIF in the human brain was studied using immunochemistry and the newly available OligoInternode database. RESULTS: MIF was significantly decreased in treatment-naïve CIS and RRMS patients compared to HCs but was elevated in SPMS. Interestingly, MIF levels were sex-dependent and significantly lower in women with CIS and RRMS. MIF expression in the human brain was localized to neurons, astrocytes, pericytes, and oligo5 oligodendrocytes but not in microglia. CONCLUSION: The finding that MIF was decreased in newly diagnosed CIS and RRMS patients but was high in patients with SPMS may suggest that MIF levels in CSF are regulated by local MIF receptor expression that affects the overall MIF signaling in the brain and may represent a protective mechanism that eventually fails.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Encéfalo , Feminino , Humanos , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano
7.
Anal Bioanal Chem ; 401(1): 135-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21553124

RESUMO

The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression profiling of mammalian neural cells using direct analysis by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS analysis is rapid, sensitive, robust, and specific for large biomolecules in complex matrices. Here, we describe a newly developed and straightforward methodology for direct characterization of rodent CNS glial cells using MALDI-MS-based intact cell mass spectrometry (ICMS). This molecular phenotyping approach enables monitoring of cell growth stages, (stem) cell differentiation, as well as probing cellular responses towards different stimulations. Glial cells were separated into pure astroglial, microglial, and oligodendroglial cell cultures. The intact cell suspensions were then analyzed directly by MALDI-TOF-MS, resulting in characteristic mass spectra profiles that discriminated glial cell types using principal component analysis. Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of different cell types with molecular specificity.


Assuntos
Encéfalo/citologia , Neuroglia/química , Neuroglia/citologia , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/ultraestrutura , Células Cultivadas , Histonas/análise , Neuroglia/ultraestrutura , Proteômica/métodos , Ratos , Ratos Sprague-Dawley
8.
J Neurol ; 268(9): 3316-3324, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33661357

RESUMO

BACKGROUND: High Temperature Requirement Serine Protease A1 (HTRA1) degrades extracellular matrix molecules (ECMs) and growth factors. It interacts with several proteins implicated in multiple sclerosis (MS), but has not previously been linked to the disease. OBJECTIVE: Investigate the levels of HTRA1 in cerebrospinal fluid (CSF) in different subtypes of MS and brain tissue. METHODS: Using ELISA, HTRA1 levels were compared in CSF from untreated patients with relapsing-remitting MS (RRMS, n = 23), secondary progressive MS (SPMS, n = 26) and healthy controls (HCs, n = 26). The effect of disease modifying therapies (DMTs) were examined in both patient groups. Cellular distribution in human brain was studied using immunochemistry and the oligointernode database, based on a single-nuclei RNA expression map. RESULTS: HTRA1 increased in RRMS and SPMS compared to HCs. DMT decreased HTRA1 levels in both types of MS. Using ROC analysis, HTRA1 cut-offs could discriminate HCs from RRMS patients with 100% specificity and 82.6% sensitivity. In the brain, HTRA1 was expressed in glia and neurons. CONCLUSION: HTRA1 is a promising CSF biomarker for MS correlating with disease- and disability progression. Most cell species of the normal and diseased CNS express HTRA1 and the expression pattern could reflect pathological processes involved in MS pathogenesis.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Biomarcadores/química , Estudos de Casos e Controles , Progressão da Doença , Humanos , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano
9.
J Proteome Res ; 9(3): 1226-35, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19954255

RESUMO

Polybrominated diphenyl ethers (PBDEs) are commonly used flame retardants in various consumer products. Pre- and postnatal exposure to congeners of PBDEs disrupts normal brain development in rodents. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to analyze concentration-dependent differences in protein expression in cultured cortical cells isolated from rat fetuses (GD 21) after 24 h exposure to PBDE-99 (3, 10, or 30 microM). Changes on a post-translational level were studied using a 1 h exposure to 30 microM PBDE-99. The effects of 24 h exposure to 3 and 30 microM PBDE-99 on mRNA levels were measured using oligonucleotide microarrays. A total of 62, 46, and 443 proteins were differentially expressed compared to controls after 24 h of exposure to 3, 10, and 30 microM PDBE-99, respectively. Of these, 48, 43, and 238 proteins were successfully identified, respectively. We propose that the biological effects of low-concentration PBDE-99 exposure are fundamentally different than effects of high-concentration exposure. Low-dose PBDE-99 exposure induced marked effects on cytoskeletal proteins, which was not correlated to cytotoxicity or major morphological effects, suggesting that other more regulatory aspects of cytoskeletal functions may be affected. Interestingly, 0.3 and 3 microM, but not 10 or 30 microM increased the expression of phosphorylated (active) Gap43, perhaps reflecting effects on neurite extension processes.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Proteínas do Tecido Nervoso/biossíntese , Animais , Células Cultivadas , Córtex Cerebral/citologia , Análise por Conglomerados , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Feminino , Feto/citologia , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray
10.
J Neurosci Res ; 88(11): 2338-49, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20623533

RESUMO

During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron-glial or glial-glial contacts of the sciatic nerve, dorsal root ganglia (DRG), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional studies of N-cadherin in these cultures, using the antagonist peptide INPISGQ, show a disruption of the attachment between Schwann cells, but no interference in the initial or long-term contact between Schwann cells and axons. We suggest that N-cadherin acts primarily in the adhesion between glial cells during postnatal development. It may form adherents/junctions between nonmyelinating glia, which contribute to the stable tubular structure encapsulating thin caliber axons and thus stabilize the nerve structure as a whole.


Assuntos
Caderinas/metabolismo , Caderinas/fisiologia , Células de Schwann/metabolismo , Células de Schwann/fisiologia , Envelhecimento/fisiologia , Animais , Western Blotting , Caderinas/antagonistas & inibidores , Adesão Celular/fisiologia , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Imunoeletrônica , Plexo Mientérico/citologia , Plexo Mientérico/metabolismo , Neuroglia/fisiologia , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Gravidez , Ratos , Gânglio Estrelado/citologia , Gânglio Estrelado/fisiologia
11.
Cell Mol Neurobiol ; 30(1): 13-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19543826

RESUMO

Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 microM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 microM) in NeuN-positive cells. By qPCR, MDMA (200 microM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells and neurons in embryonic cortical primary cell cultures, which was accompanied by changes in mRNA expression of specific receptors and transporters for glutamatergic and monoaminergic neurotransmitters.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Embrião de Mamíferos/citologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Contagem de Células , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
12.
Stem Cell Res ; 48: 101974, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32916638

RESUMO

Autism spectrum disorder is a heterogenous neurodevelopmental disorder. The patients experience challenges in social interaction and communication skills as well as restricted and/or repetitive behaviors. To understand the molecular mechanisms underlying developmental brain disorders, patient-derived cellular models represent a useful tool. We have generated a human induced pluripotent stem cell line (SDUKIi003-A) from skin fibroblasts derived from a 20-year old male patient diagnosed with Asperger syndrome ("FYNEN-cohort" of Southern Denmark). The reprogramming of the fibroblasts was accomplished using integration-free episomal plasmids. Characterization validated the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.


Assuntos
Síndrome de Asperger , Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Adulto , Síndrome de Asperger/genética , Diferenciação Celular , Reprogramação Celular , Fibroblastos , Humanos , Masculino , Adulto Jovem
13.
Stem Cell Res ; 46: 101834, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32447258

RESUMO

Autism spectrum disorders are characterized by impaired social interaction and communication as well as restricted and repetitive interests and behavior. Increasing evidence points to an early-stage disruption of brain development. A human-induced pluripotent stem cell line (SDUKIi002-A) was created from skin fibroblasts from a 22-year old autistic male identified in the "FYNEN-cohort" of Southern Denmark. Reprogramming of the fibroblasts was performed using integration-free episomal plasmids. Further characterization confirmed the expression of pluripotency markers, differentiation into the three germ layers, absence of chromosomal abnormalities, and mycoplasma infection.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/genética , Diferenciação Celular , Reprogramação Celular , Fibroblastos , Humanos , Masculino , Plasmídeos , Adulto Jovem
14.
Neurotoxicology ; 29(4): 628-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18550172

RESUMO

Polybrominated diphenyl ethers (PBDEs) are environmental contaminants found in human and animal tissues worldwide. Neonatal exposure to the flame retardant 2,2', 4,4',5-pentabromodiphenyl ether (PBDE-99) disrupts normal brain development in mice, and results in disturbed spontaneous behavior in the adult. The mechanisms underlying the late effects of early exposure are not clear. To gain insight into the initial neurodevelopmental damage inflicted by PBDE-99, we investigated the short-term effects of PBDE-99 on protein expression in the developing cerebral cortex of neonatal mice, and the cytotoxic and apoptotic effects of PBDE-99 in primary cultures of fetal rat cortical cells. We used two-dimensional difference gel electrophoresis (2D-DIGE) to analyze protein samples isolated from the cortex of NMRI mice 24h after exposure to a single oral dose of 12 mg/kg PBDE-99 on post-natal day 10. Protein resolution was enhanced by sample pre-fractionation. In the cell model, we determined cell viability using the trypan blue exclusion assay, and apoptosis using immunocytochemical detection of cleaved caspase-3. We determined the identity of 111 differentially expressed proteins, 32 (29%) of which are known to be cytoskeleton-related. Similar to previous findings in the striatum, we found elevated levels of the neuron growth-associated protein Gap43 in the cortex. In cultured cortical cells, a high concentration of PBDE-99 (30 microM) induced cell death without any apparent increase in caspase-3 activity. These results indicate that the permanent neurological damage induced by PBDE-99 during the brain growth spurt involve detrimental effects on cytoskeletal regulation and neuronal maturation in the developing cerebral cortex.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Retardadores de Chama/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Éteres Fenílicos/toxicidade , Bifenil Polibromatos/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional/métodos , Embrião de Mamíferos , Feminino , Éteres Difenil Halogenados , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Gravidez , Ratos , Ratos Sprague-Dawley
15.
Biol Psychiatry ; 83(7): 558-568, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29295738

RESUMO

Autism spectrum disorders are a group of pervasive neurodevelopmental conditions with heterogeneous etiology, characterized by deficits in social cognition, communication, and behavioral flexibility. Despite an increasing scientific effort to find the pathophysiological explanations for the disease, the neurobiological links remain unclear. A large amount of evidence suggests that pathological processes taking place in early embryonic neurodevelopment might be responsible for later manifestation of autistic symptoms. This dysfunctional development includes altered maturation/differentiation processes, disturbances in cell-cell communication, and an unbalanced ratio between certain neuronal populations. All those processes are highly dependent on the interconnectivity and three-dimensional organizations of the brain. Moreover, in order to gain a deeper understanding of the complex neurobiology of autism spectrum disorders, valid disease models are pivotal. Induced pluripotent stem cells could potentially help to elucidate the complex mechanisms of the disease and lead to the development of more effective individualized treatment. The induced pluripotent stem cells approach allows comparison between the development of various cellular phenotypes generated from cell lines of patients and healthy individuals. A newly advanced organoid technology makes it possible to create three-dimensional in vitro models of brain development and structural interconnectivity, based on induced pluripotent stem cells derived from the respective individuals. The biggest challenge for modeling psychiatric diseases in vitro is finding and establishing the link between cellular and molecular findings with the clinical symptoms, and this review aims to give an overview over the feasibility and applicability of this new tissue engineering tool in psychiatry.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Células-Tronco Pluripotentes Induzidas , Modelos Biológicos , Células-Tronco Neurais , Neurogênese , Organoides , Psiquiatria/métodos , Encéfalo/crescimento & desenvolvimento , Humanos
16.
Neurochem Int ; 113: 46-55, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29162485

RESUMO

Steroids are reported to have diverse functions in the nervous system. Enzymatic production of steroid hormones has been reported in different cell types, including astrocytes and neurons. However, the information on some of the steroidogenic enzymes involved is insufficient in many respects. Contradictory results have been reported concerning the relative importance of different cell types in the nervous system for expression of CYP17A1 and 3ß-hydroxysteroid dehydrogenase (3ß-HSD). 3ß-HSD is important in all basic steroidogenic pathways and CYP17A1 is required to form sex hormones. In the current investigation we studied the expression of these enzymes in cultured primary rat astrocytes, in neuron-enriched cells from rat cerebral cortex and in human neuroblastoma SH-SY5Y cells, a cell line often used as an in vitro model of neuronal function and differentiation. As part of this study we also examined potential effects on CYP17A1 and 3ß-HSD by vitamin D, a compound previously shown to have regulatory effects in steroid hormone-producing cells outside the brain. The results of our study indicate that astrocytes are a major site for expression of 3ß-HSD whereas expression of CYP17A1 is found in both astrocytes and neurons. The current data suggest that neurons, contrary to some previous reports, are not involved in 3ß-HSD reactions. Previous studies have shown that vitamin D can influence gene expression and hormone production by steroidogenic enzymes in some cells. We found that vitamin D suppressed CYP17A1-mediated activity by 20% in SH-SY5Ycells and astrocytes. Suppression of CYP17A1 mRNA levels was considerably stronger, about 50% in SH-SY5Y cells and 75% in astrocytes. In astrocytes 3ß-HSD was also suppressed by vitamin D, about 20% at the enzyme activity level and 60% at the mRNA level. These data suggest that vitamin D-mediated regulation of CYP17A1 and 3ß-HSD, particularly on the transcriptional level, may play a role in the nervous system.


Assuntos
17-Hidroxiesteroide Desidrogenases/biossíntese , Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica , Esteroide 17-alfa-Hidroxilase/biossíntese , Esteroides/biossíntese , Vitamina D/farmacologia , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/genética , Animais , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ratos , Ratos Sprague-Dawley , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/genética , Esteroides/antagonistas & inibidores
17.
PLoS One ; 10(7): e0132456, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26148198

RESUMO

A single nucleotide polymorphism in the ZNF804A gene, rs1344706, is associated with schizophrenia. The polymorphism has been suggested to alter fetal expression of ZNF804A. It has also been reported to be associated with altered cortical functioning and neural connectivity in the brain. Since developmental mechanisms are suggested in the pathophysiology for schizophrenia, expression of Zfp804A, the rat homolog of ZNF804A, was investigated in the developing rat brain. We found that expression of Zfp804A in most brain regions is developmentally regulated and peaks around birth, where after it decreases towards adult levels. This time point is developmentally the equivalent to the second trimester of fetal development in humans. An exception to this expression pattern is the hippocampus where the expression of Zfp804A appears to increase again in the adult brain. Using laser capture and quantitative PCR we found that Zfp804A mRNA expression in the adult rat hippocampus is highest in the CA1 sub region, where the overall firing rates of neurons is higher than in the CA3 region. In cultured cortical neurons Zfp804A mRNA expression peaked at day 4 and then decreased. The ZFP804A protein expression was therefore investigated with immunochemistry in such cultures. Interestingly, before day 4, the protein is mostly found in the perinuclear region of the cell but at day 4, ZFP804A was instead found throughout the cell and particularly in the growth cones. In conclusion we demonstrate that Zfp804A increases in the rat brain at the time of birth, coinciding with neuronal differentiation. We also show that ZFP804A is localized to growth cones of growing neurites. These data implicate ZFP804A in growth cone function and neurite elongation. The polymorphism rs1344706 lowers expression of ZNF804A during prenatal brain development. This may affect ZNF804A's role in cone function and neurite elongation leading to synaptic deficits and altered neural connectivity.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Regulação da Expressão Gênica , Cones de Crescimento/metabolismo , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único , Animais , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Células Cultivadas , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia
18.
FEMS Microbiol Lett ; 241(2): 233-42, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15598538

RESUMO

Until recently, the function of the fifth domain of the thermostable modular xylanase Xyn10A from Rhodothermus marinus was unresolved. A putative homologue to this domain was however identified in a mannanase (Man26A) from the same microorganism which raised questions regarding a common function. An extensive search of all accessible data-bases as well as the partially sequenced genomes of R. marinus and Cytophaga hutchinsonii showed that homologues of this domain were encoded by multiple genes in microorganisms in the phylum Bacteroidetes. Moreover, the domain occurred invariably at the C-termini of proteins that were predominantly extra-cellular/cell attached. A primary structure motif of three conserved regions including structurally important glycines and a proline was also identified suggesting a conserved 3D fold. This bioinformatic evidence suggested a possible role of this domain in mediating cell attachment. To confirm this theory, R. marinus was grown, and activity assays showed that the major part of the xylanase activity was connected to whole cells. Moreover, immunocytochemical detection using a Xyn10A-specific antibody proved presence of Xyn10A on the R. marinus cell surface. In the light of this, a revision of experimental data present on both Xyn10A and Man26A was performed, and the results all indicate a cell-anchoring role of the domain, suggesting that this domain represents a novel type of module that mediates cell attachment in proteins originating from members of the phylum Bacteroidetes.


Assuntos
Bacteroidetes/enzimologia , Parede Celular/enzimologia , Regulação Bacteriana da Expressão Gênica , Rhodothermus/enzimologia , Xilano Endo-1,3-beta-Xilosidase/química , Sequência de Aminoácidos , Bacteroidetes/classificação , Bacteroidetes/genética , Biologia Computacional/métodos , Imuno-Histoquímica , Dados de Sequência Molecular , Filogenia , Rhodothermus/genética , Rhodothermus/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Xilano Endo-1,3-beta-Xilosidase/genética , Xilano Endo-1,3-beta-Xilosidase/metabolismo
19.
Clin Colorectal Cancer ; 13(2): 73-80, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24365057

RESUMO

Oxaliplatin is a chemotherapeutic agent effective against advanced colorectal cancer. Unlike with other platinum-based agents, the main side effect of oxaliplatin is polyneuropathy. Oxaliplatin-induced polyneuropathy (OIPN) has a unique profile, which can be divided into acute and chronic neurotoxicity. Early identification of the neurotoxicity and alterations in dose or schedule for the medication could prevent the development of chronic symptoms, which, once established, may take many months or years to resolve or even persist throughout life with a substantial effect on quality of life. There is no doubt that the use of pharmacogenomic methods to identify genetic bases of interindividual differences in drug response has led to what is called tailoring treatment. Yet there are some challenges regarding the application of these differences. Many efforts have been made to prevent or treat OIPN. Better understanding of the mechanisms underlying the acute and chronic forms of OIPN will be a key component of future advances in the prevention and treatment of OIPN. The aim of this review is to highlight the clinical presentation, assessment, and management of OIPN, as well as the underlying pathophysiologic and pharmacogenomic background.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Compostos Organoplatínicos/efeitos adversos , Doença Aguda , Animais , Antineoplásicos/efeitos adversos , Doença Crônica , Humanos , Síndromes Neurotóxicas/fisiopatologia , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Farmacogenética , Polineuropatias/induzido quimicamente , Polineuropatias/fisiopatologia
20.
Neurochem Int ; 58(6): 620-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21300119

RESUMO

The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons in several ways, are important for brain neurosteroidogenesis. We found that estradiol significantly suppressed CYP7B1-mediated DHEA hydroxylation in primary mixed CNS cultures from fetal and newborn rats. Also, CYP7B1-mediated DHEA hydroxylation and CYP7B1 mRNA were markedly suppressed by estrogen in primary cultures of rat astrocytes. Interestingly, diarylpropionitrile, a well-known agonist of estrogen receptor ß, also suppressed CYP7B1-mediated hydroxylation of DHEA. Several previous studies have reported neuroprotective effects of estrogens. The current data indicate that one of the mechanisms whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism.


Assuntos
Astrócitos/efeitos dos fármacos , Desidroepiandrosterona/metabolismo , Estradiol/farmacologia , Esteroide Hidroxilases/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/metabolismo , Sequência de Bases , Células Cultivadas , Técnicas de Cocultura , Família 7 do Citocromo P450 , Primers do DNA , Hidroxilação , Nitrilas/farmacologia , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA