Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Imaging ; 8(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35448219

RESUMO

The 64Cu-labeled chelator was analyzed in vivo by positron emission tomography (PET) imaging to evaluate its biodistribution in a murine model at different acquisition times. For this purpose, nine 6-week-old female Balb/C nude strain mice underwent micro-PET imaging at three different time points after 64Cu-labeled chelator injection. Specifically, the mice were divided into group 1 (acquisition 1 h after [64Cu] chelator administration, n = 3 mice), group 2 (acquisition 4 h after [64Cu]chelator administration, n = 3 mice), and group 3 (acquisition 24 h after [64Cu] chelator administration, n = 3 mice). Successively, all PET studies were segmented by means of registration with a standard template space (3D whole-body Digimouse atlas), and 108 radiomics features were extracted from seven organs (namely, heart, bladder, stomach, liver, spleen, kidney, and lung) to investigate possible changes over time in [64Cu]chelator biodistribution. The one-way analysis of variance and post hoc Tukey Honestly Significant Difference test revealed that, while heart, stomach, spleen, kidney, and lung districts showed a very low percentage of radiomics features with significant variations (p-value < 0.05) among the three groups of mice, a large number of features (greater than 60% and 50%, respectively) that varied significantly between groups were observed in bladder and liver, indicating a different in vivo uptake of the 64Cu-labeled chelator over time. The proposed methodology may improve the method of calculating the [64Cu]chelator biodistribution and open the way towards a decision support system in the field of new radiopharmaceuticals used in preclinical imaging trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA